Variations to somatic protein profiles of *Dicrocoelium dendriticum* in Iranian ruminants

Meshgi, B.^{1,2*}, Eslami, A.³, Taefie-Nasrabadi, N.⁴, Jalosian, F.¹

¹Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.

²Center of Excellent of Ecosystem and Structural Changes of Helminthes, Tehran, Iran.

³Department of Parasitology, School of Specialized Sciences of Veterinary Medicine, Unit of Sciences and Researches, Islamic Azad University, Tehran, Iran.

⁴Department of Parasitology, Faculty of Veterinary Medicine, Islamic Azad University, Karaj, Iran.

Key words:

Dicrocoelium dendriticum, somatic antigens, SDS-PAGE, ruminants, Iran.

Correspondence

Meshgi, B. Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran,Iran. Tel: +98(21) 66924469 Fax: +98(21) 66933222 Email: Bmeshgi@ut.ac.ir

Received: 9 January 2012 Accepted: 23 May 2012

Abstract:

BACKGROUND: Dicrocoelium dendriticum, a liver trematode of herbivores, and man is very prevalent among ruminants of Iran, resulting in causing significant economic losses. Recently its phenotype polymorphism has been found in Iran, a phenomenon that may affect the protein profile of the parasite. **OBJECTIVES:** The aim of this study was to determine the somatic protein profiles of D.dendriticum in different ruminants in Iran. METHODS: Adult worms were collected from infected livers of sheep, goat, cattle, buffalo and camel. Somatic antigens were prepared separately by centrifugation of the homogenized adult worms and their patterns were determined using SDS-PAGE. RESULTS: Our findings revealed 18-20 protein fractions in somatic proteins of D. dendriticum of sheep and goat and 12, 11 and 10 in that of buffalo, cattle and camel respectively showing similar molecular weights of 14.4 to 116 kDa. Similar protein bands were seen in sheep and goats samples; but not for in other samples. CONCLUSIONS: The results showed polymorphism in the somatic protein patterns of D.dendriticum isolated from different hosts. A different number of protein bands with similar molecular weights of somatic antigens of D. dendriticum are described for the first time in the present study.

Introduction

Dicrocoelium dendriticum, a liver parasite, affects several host species, especially ruminants world wide. Several mollusks and ants can play a role as the first and second intermediate hosts. Dicrocoeliasis has been reported from different ruminants such as equine, hare, wild boar, wild sheep (Eslami et al., 1976; Eslami and Nadalian, 1987; Eslami et al., 2000; Eslami and Farsad-Hamdi, 1992) and human (Sohrabi, 1973) in Iran. Recently phenotype polymorphism for this parasite was shown in different herbivores of Iran (Taefie-Nasrabadi et al., 2008). It is important to recognize that trematodes have characteristics shared with some other invertebrates e.g. cestode which make it theoretically possible to have some "strains" adapted to a new host species. Therefore, a new strain (or race) of a trematode adapted to a new strain of intermediate or definitive host (s), and perhaps having distinct physiological characteristics, could arise (Smith and Halton, 1986). Meanwhile, high genetic variability was shown in adult *D.dendriticum* (Sandoval et al., 1999). The aim of present study was to determine the soumatic cell protein profiles of *D. dendriticum* in different ruminants in Iran.

Materials and Methods

Adult flukes were collected from infected livers

from sheep, goats, cattle and camels in Bassim as well as for buffalo in Bandar-Anzali abattoir. Flukes were washed several times with PBS, and homogenized with phosphate buffer saline (PBS) containing 1 mM phenyl methyl solphonyle fluoride (PMSF) in a glass tissue grinder. The homogenates were centrifuged at 12000 g for 30 min at 4°C. Protein concentration was determined according to Bradford (1976). The protein concentration of somatic products was ranging from $20-25 \mu g/\mu l$. All prepared antigens were labeled and stored at -20 °C until used.

SDS-PAGE analysis: SDS-PAGE assays were performed according to Laemmli (1970). Protein fractions and somatic antigens of *D.dendriticum* were analyzed under reducing conditions using Mini Protean III cell apparatus (Bio-Rad) of 110 V constant voltages during 60 min with gel thickness 0.75 mm. SADS-PAGE carried out on 10% and 5% resolving and stacking gel respectively. The gels were stained with coomassie blue and photographed.

Results

The results of electrophoresis of somatic antigens of *D.dendriticum* of sheep, goat, buffalo, cattle and camel are shown in Figures 1-2. About twenty bands with 14.4 to 116 kDa molecular weight were determined in sheep and goats samples. Some fractions showing 16, 27, 33, 37, 44, 55, 58, 75 and 80 kDa were more visible.

D.dendriticum samples obtained from buffalo, cattle and camel resulted in producing 12, 11 and 10 fractions, respectively, having similar molecular weights to those of sheep and goat samples (14.4 to 116 kDa). Fractions showing 16, 36, 40 and 116 kDa were clear and common for all buffalo, cattle and camel samples. Also, fractions showing 70 kDa in buffalo sample and 23 and 27 kDa in cattle and camel sample were more clearly visible. Meanwhile the fractions showing 23 and 25 kDa were seen only in cattle and camel sample. In the two latter hosts the fraction gave above 35 kDa and were significantly less compressed than the other hosts.

Discussion

In the present study, we found that there is a possible emerging of a new "isolate", or called a

"strain". According to Smith and Halton, 1986, due to hermaphroditism in trematodes, an unexpressed recessive mutant gene from one generation will appear in both male and female germ cells and at the same time in the next generation. Thus, a single mutation could theoretically give rise to homozygous double recessive and an 'instant' mutant could appear. In addition to these facts, because of multiplification of trematodes in the molluscan intermediate hosts by polyembryony, the mutant multiplies very rapidly (Rollinson et al., 1986). A study on the phenotype polymorphism of D.dendriticum of different herbivores from Iran showed some sort of polymorphism in different animals (Taefie-Nasrabadi et al., 2008). It was stated that even similar phenotype of a trematode, may reveal different pathogenesis, reproduction, immunity and chemotherapy (Rollinson et al., 1986). In this study, serotype polymorphism was shown in *D.dendriticum* of sheep and goat and with that of cattle, camel and buffalo using SDS-PAGE. Although all protein fractions share the same molecular weights (14.4-116 kDa), differences were observed in the number of bands in sheep and goat (18-20) and camel, cattle, and buffalo (10,11,12) respectively. Our findings in cattle are in contrast with Wedrychowicz et al., 1995 and Revilla-Nuin et al., 2005, who found 8-9 polypeptides with 29 to 205 kDa in D. dendriticum surface proteins of cattle usind SDS-PAGE while 17 bands in SDS soluble or somatic proteins extracted with TBS. Meanwhile Revilla-Nuin et al., 2005, report 36 polypeptide bands in the somatic extract of sheep D.dendriticum. The variation in number and molecular weight of protein profiles of D. dendriticum of sheep and cattle reported by different workers could be due to geographical distribution of the parasite, different intermediate and final hosts belong to animal behaviors. Studying the genetic variability of D.dendriticum of sheep suggests that each sheep is infected by numerous genetically different parasites from one or more populations of infected ants (Manga-Gonzalez and Gonzalez-Lanza, 2005). Campo et al., 1998, characterization of adult D.dendriticum by isoelectric focusing in cattle, sheep and goat showed some differences in their enzyme types. According to Otranto et al., 2007, although no intra-specific morphometric differences were recorded for D.dendriticum from different hosts or localities, but

Meshgi, B.

Figure 1. Protein profile of somatic antigens of *D.dendriticum*: goat sample (D1), Sheep sample (D2), Protein marker (M) (Fermentase=SM 0431).

there was a low level of intra-specific variation (i.e. 0.3%) found in the ITS-2 sequence of *D.dendriticum* irrespective of host species or locality. In contrast to Otranto et al., 2007 several reports exist on morphoanatomic differences in *D.dendriticum* Phenotype, enzyme and genotype polymorphism that may be an indication for production of a new strain (Taefie-Nasrabadi et al., 2008; Smith and Halton, 1986; Sandoval et al., 1999).

According to Morozova et al., 2002, the high level of molecular polymorphism and heterogeneity in trematode adults of *D.dendriticum*, is probably caused by a great variety of microevolution factors affecting the population structure of parasites at different stages in different animal hosts. Of these factors, the most essential are various types of selection and the migration of host animals (Morozova et al., 2002). Although phenotype and serotype polymorphism shown in protein profiles of *D.dendriticum* from different hosts in Iran, further studies on the molecular or genomic levels, are needed to prove the probability of the arising of a new "isolate" or "strain".

Figure 2. Protein profile of somatic antigens of *D.dendriticum*: Buffalo sample (D1), Cattle sample (D2), Camel sample (D3), Protein marker (M) (Fermentase=SM 0431).

References

- Eslami, A., Changizi, E., Moghadam, M. (2000) Prevalence helminth infections in the cape hare (*Lepus capensis*) in Iran. Vet. Res. Comp. 24: 455-458.
- Eslami, A., Farsad-Hamdi, S. (1992) Helminth parasites of wild boar sus scrofa, in Iran. J. Wildlife Dis. 2: 318-319.
- Eslami, A., Nadalian, M.G. (1987) A report on the platyhelminth infection of equines in Iran. J. Vet. Fac. Univ. Tehran. 42: 33-38.
- Eslami, A., Nayeri-Rad, M., Salehi, M.R., Faizy, A. (1976) Study on liver trematodes of ruminants slaughtered at Tehran abattoir. J. Vet. Fac. Univ. Tehran. 32: 21-30.
- Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantitive protein utilizing the principle of protein dye binding. Ann. Biochem. 22: 248-254.
- Campo, R., Manga-Gonzalez, M.Y., Gonzalez-Lanza, C., Rollinson, D., Sandoval, H. (1998) Characterization of adult *Dicrocoelium dendriticum* by isoelectric focusing. J. Helminthol. 72: 109-116.
- Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.
- Manga-Gonzalez, M.Y., Gonzalez-Lanza C. (2005) Field and experimental studies on *Dicrocoelium dendriticum* and dicrocoeliosis in northern Spain. J. Helminthol. 79: 291-302.
- 9. Morozova, E.V., Ryskov, A.P., Semyenova, S.K.

(2002) RAPD variation in two trematode species (Fasciola hepatica and *Dicrocoelium dendriticum*) from a single cattle population. Russian J. Gen. 38: 977-983.

- Otranto, D., Rehbein, S., Weigl, S., Cantacessi, C., Parisi, A., Paolo Lia, R., et al. (2007) Morphological and molecular differentiation between *Dicrocoelium dendriticum* (Rudolphi, 1819) and Dicrocoelium chinensis (Sudarikov and Ryjikov, 1951) Tand and Tang, 1978 (Platyhelminthes: Digenea). Act. Trop. 104: 91-98.
- Revilla-Nuin, B., Manga-Gonzalez, M.Y., Minambres, B., Gonzalez-Lanza, C. (2005) Partial characterization and isolation of 130 kDa antigenic protein of *Dicrocoelium dendriticum* adults. Vet. Parasitol. 134: 229-240.
- Rollinson, D., Wallker, T.K., Simpson, J.G. (1986) The application of recombinant DNA technology to problems of helminth identification. Parasitol. 91: S53-S71.
- Sandoval, H., Manga-Gonzalez, Y., Campo, R., Garcia, P., Castro, J.M., Perez de laVega, M. (1999) Preliminary study on genetic variability of *Dicrocoelium dendriticum* determined by random amplified polymorphic DNA. Parasitol. Internat. 48: 21-26.
- Smith, J.D., Halton, D.W. (1986) The Physiology of Trematodes. (2nd ed.) Cambridge University Press. London, UK.
- 15. Sohrabi, A. (1973) *Dicrocoelium dendriticum*, first human case report. J. Tehran Med. Fac. 8: 262-264.
- Taefie-Nasrabadi, S., Eslami, A., Bokaei, S. (2008) Polymorphism of *Dicrocoelium dendriticum* of domestic and wild animals. Iranian J. Comp. Biopathol. 4: 105-108.
- Wedrychowicz, H., Ducommun, D., Gorki, P., Pfister, K. (1995) Somatic antigens of adult *Dicrocoelium dendriticum* recognized by bile antibodies of naturally infected cattle. Vet. Parasitol. 56: 47-56.

مجله طب دامی ایران، ۱۳۹۱، دوره ۶، شماره ۲، ۹۸–۹۵

تنوع الگوی پروتئینهای بدنی دیکروسلیوم دندر یتیکم در نشخوارکنندگان ایران

بهنام مشگی^{۲،۱**} علی اسلامی^۳ نادیا طایفی نصر آبادی^۴ فاطمه جالوسیان^۱ ۱) گروه انگلشناسی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران. ۲) قطب علمی بوم سازگان و تغییرات ساختاری کرمها، تهران، ایران. ۳) گروه انگلشناسی، دانشکده علوم تخصصی دامپزشکی دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران. ۴) گروه انگلشناسی، دانشکده دامپزشکی دانشگاه آزاد اسلامی واحد کرج، کرج، ایران.

(دریافت مقاله: ۹ دی ماه ۱۳۹۰ ، پذیرش نهایی: ۳ خرداد ماه ۱۳۹۱)

چکیدہ

زمینه مطالعه: دیکروسلیوم دندرتیکم یکی از ترماتودهای بافتکبدی علفخواران وانسان استکه در نشخوارکنندگان ایران شایع بوده و ضرر وزیان اقتصادی شدیدی را همراه دارد. با بررسی های انجام گرفته پلی مور فیسم این ترماتود نشان داده شده است که می تواند بر الگوی پروتئینی انگل هم تأثیرگذار باشد. **هدف:** بررسی حاضر بمنظور تعیین الگوی پروتئین های بدنی دیکرو سلیوم دندرتیکم در نشخوارکنندگان مختلف ایران انجام گرفت. **روش کار :** کرم های بالغ از کبد گوسفند، بز، گاو، گاومیش و شتر جمع آوری و آنتی ژن بدنی در هر مورد تهیه شد. این آنتی ژن ها براساس هموژنیزه کردن کرم بالغ از کبد گوسفند، بز، گاو، گاومیش و شتر جمع آوری و آنتی ژن بدنی در هر مورد تهیه شد. این اکتروفورتیک آنتی ژن های تهیه شده حاکی از و جود ۲۰ – ۱۸ باند پروتئینی در مورد دیکروسلیوم دندرتیکم گوسفندوبزو ۱۰، ۱۱ و ۱۲ باند پروتئینی به ترتیب در دیکروسلیوم دندرتیکم شتر، گاو و گاومیش بود. وزن مولکولی باندهای شناسایی شده در همه نمونه ها حدود آگار ۱۹ باند پروتئینی اگر چه باندهای پروتئینی در گوسفند و بزمشابه بودند ولی درسایر میزبان ها اختلاف و جود داشت. در ای ۲۰ به ۱۱ و ۲۱ باند پروتئینی ا اگر چه باندهای پروتئینی در گوسفند و بزمان اس مختلف نوعی پلی مورفیسم دیده می شود. تعداد مختلف باندهای پروتئینی های در و تکور ای در ای کار با و تا با و تا با در این کروتئینی های بدنی کرم بالغ دیکروسلیوم دندرتیکم شتر، گاو و گاومیش بود. وزن مولکولی باندهای شناسایی شده در همه نمونه ها حدود کار با در و تو که دی با در می مورد دیکروسلیوم دند تیکم گوسفندوبزو ۱۰، ۱۱ و ۲۱ باند پروتئینی های به ترتیب در دیکروسلیوم دندرتیکم شتر، گاو و گاومیش بود. وزن مولکولی بانده می شناسایی شده در همه نمونه ها حدود کار بود نی مرا با در دیکروسلیوم دند در تیکم شاور در می می مود. در می مولکولی با می شود. در مورد در مانده می بود نی مولکولی با در در می می می مود. در موره در مور دا دا در در تیکم گوسفندوبزو مان مولکولی با می شود.

واژه هاى كليدى: ديكروسليوم دندرتيكم، آنتى ژن هاى بدنى، SDS-PAGE، نشخواركنندگان، ايران.

*)نویسنده مسؤول: تلفن: ۹۸(۲۱)۶۶۹۲۴۴۶۹ نمابر: ۹۸(۲۱)۶۶۹۳۳۲۲۲ + مابر