Effects of Hesperidin During Pregnancy on Antidepressant-like behaviour in Postpartum Mice

Ava Khodadadeh 1, Shahin Hassanpour 2*, Ghasem Akbari 3

1 Graduated from the Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

BACKGROUND: Post-partum depression is has higher prevalence among other mental illness and herbal therapies are potential alternatives and adjuncts for its treatment. Hesperidin is the major flavonoid isolated from citrus fruits which has neuroprotective, antioxidant and antidepressant activity.

OBJECTIVES: We studied the effect of prepartum administration of Hesperidin on postpartum antidepressant-like effects in mice.

METHODS: Twelve male and 40 female mice (28-30 gr) were randomly selected and after determination of the pregnancy using vaginal plaque, allocated into 4 experimental groups. Group 1 was kept as control and groups 2-4 were i.p. injected with hesperidin (0.1, 0.5 and 1 mg/kg) on days of 5, 8, 11, 14 and 17 of pregnancy. The control group received i.p. injection of the saline on the same days. Following postpartum, forced swimming test (FST), tail suspension test (TST) and open field tests were used to evaluate depressive-like antidepressant activity of hesperidin. Also, serum Malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD) and total antioxidant capacity (TAC) were determined.

RESULTS: Based on findings, administration of the different levels of the hesperidin (0.5 and 1 mg/kg) at GD 5, 8, 11, 14 and 17 significantly diminished immobility time (S) in TST and FST on postpartum mice in comparison to control group ($P \leq 0.05$). Pre-partum administration of hesperidin (0.1, 0.5 and 1 mg/kg) had no effect on OFT ($P > 0.05$). Administration of the hesperidin (0.5 and 1 mg/kg) during the GD significantly diminished MDA levels on postpartum compared to control group ($P \leq 0.05$). Also, pre-partum administration of the hesperidin (0.1, 0.5 and 1 mg/kg) significantly increased SOD and GPx levels on postpartum mice in comparison to control group ($P \leq 0.05$).

CONCLUSIONS: These results suggested pre-partum administration of hesperidin has antidepressant and antioxidant effect in postpartum mice.

KEYWORDS: Pregnancy, Hesperidin, Antidepressant, Antioxidant, Postpartum, Mice

Copyright © 2020. This is an open-access article distributed under the terms of the Creative Commons Attribution-4.0 International License which permits Share, copy and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, even commercially.

How to Cite This Article

Introduction

Depressive disorders are the most prevalent form of mental illness worldwide. Major depression is characterized by a change in psychosocial and physical impairment mood as well as lack of interest in the surroundings (Saravi et al., 2016). There are growing reports on the incidence of depression in both males and females in modern society (Gu et al., 2014). The post-partum period represents profound physiological and emotional changes in mothers to ensure the well-being and nurturance of the offspring. However, several psychiatric disorders can develop in this phase (Perani and Slattery, 2014). Post-partum mood and anxiety disorders affect maternal and infant as well as developing psychiatric disorder in later life such as post-partum depression (PPD), post-partum anxiety and post-partum psychosis (Ming and Shinn-Yi, 2016). Several animal methods such as stress-based, high-fat diet-based and pup separation models are used to induce experimental PPD (Ming and Shinn-Yi, 2016). There are growing reports of new antidepressant agents with side effects (Alimohammadi et al., 2019).

Hesperidin is the major flavonoid isolated from citrus fruits (Li and Schluesener, 2017). The hesperidin molecule is composed of a glycone unit known as hesperetin and a disaccharide, rutinose (Iranshahi et al., 2015). Hesperidin has several biological effects including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic and anti-allergic effects and insulin-sensitizing activity (Li and Schluesener, 2017). In addition, hesperidin neuropharmacological properties have been reported for the hesperidin (Hajialyani et al., 2019). It has high potential for radical scavenging and protective effects and can cross blood brain barrier (Khan and Parvez, 2015). Hesperidin promotes has neuroprotective effects by increase survival and differentiation of the neurons (Matias et al., 2017) which have positive effect for stroke, Huntington’s, Alzheimer’s and Parkinson’s disease (Antunes et al., 2014). Several antioxidant compounds, such as flavonoids derived from natural products, have demonstrated neuroprotective activity in PPD (Antunes et al., 2014).

Antioxidant enzymes, such as glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), also are important mediators in the reduction of oxidative stress (Khan et al. 2012). It is reported that (50 mg/kg) treatment increased GPx, SOD and CAT activity in mouse model of Parkinson’s disease (Antunes et al., 2014). Hesperidin in the acute (1 mg/kg) and chronic (0.1, 0.3 and 1 mg/kg) levels improved tail suspension test (TST) which improved antidepressant-like effect (Donato et al., 2014). Based on the aforementioned evidence, we sought to investigate effects of the Hesperidin exposure during pregnancy on antidepressant-like effects postpartum in mice.

Materials and methods

Animals

The NMRI male (n=12) and virgin female mice (n=40, age: 8–10 weeks old and 28–30 gr) were supplied from the Razi Serum and Vaccine Institute (Tehran, Iran). The animals acclimatized for 1 week before beginning the study. All experimental procedures were approved by the Animal Ethics Committee of Science and Research Branch of Islamic Azad University, Tehran, Iran (IR.IAU.SRB.REC.1398.117). follow-
ing 7 days of acclimatization, the female mice were kept with fertile male mice. Every day, the female mice were checked and presence of the vaginal plug or sperm was defined as onset of pregnancy. The pregnant mice were randomly assigned into 4 groups (n = 10 for each group) and provided ad libitum food and water.

Experimental procedure

In control group, pregnant mice were i.p. injected with saline containing 0.05% Tween-80 at 5, 8, 11, 14 and 17 days of gestation (GD). In groups 2, 3 and 4, mice were injected with 0.1, 0.5 and 1 mg/kg of hesperidin at same days, respectively. The dosage of the hesperidin was determined based on the previous reports (Antunes et al., 2014; Donato et al., 2014; Khan and Parvez, 2015; Pari et al., 2015) and our pilot study. Then after delivery, antidepressant-like effects of the hesperidin were evaluated using neurobehavioral tests that were done on female mice.

Tail suspension test (TST)

The TST is one of the most common techniques for assessing antidepressant-like activity in mice (Cryan et al., 2005). The TST was done in accordance to stated by Steru et al. (1985). Briefly, the animal was far from nearest objects and were both acoustically and visually isolated from observing or interacting each other. Then mice suspended 50 cm above the floor by adhesive tape placed approximately 1 cm from the extremity of the tail, in such a position that it cannot escape or hold on to nearby surfaces. Immobility time was monitored during a 6 minutes. Mice were considered immobile only when they had no strong body shaking and movement of the limbs as they hung passively and completely motionless.

Open field test (OFT)

The Open field test (OFT) was used to evaluate effects of hesperidin on the locomotor and exploratory activities. The OFT was done using 45×45×30 cm³ poly wood cage. The flour of OFT cage was divided into 3×3 squares. Each animal was placed individually at the center of the apparatus and observed for 6 minutes to record the locomotion (number of segments crossed with the four paws) (Donato et al., 2014).

Forced Swimming Test (FST)

FST was carried out following the protocol as described previously in mice (Castagné et al., 2011). Each mouse was plunged into a glass cylinder (height: 25 cm; diameter: 15 cm) containing 10 cm of water (25 ± 1 °C) for 15 min (pre-test session). The immobility time for mouse was described as when it ceased struggling and remained floating motionless in the water, making only small movements necessary to keep its head above water. The total duration of immobility during the last 4 minutes of the 6 minutes testing period was measured.

Antioxidant activity

At the end of the neurobehavioral tests, blood samples were taken from each mouse and serum MDA, SOD, GPx and total antioxidant capacity (TAC) were determined using Zell Bio GmbH (Germany) assay kits.

Statistical analysis

Data was analyzed by one-way analysis of variance (ANOVA) and is presented as the mean ± SEM. For treatments found to have an effect according to the ANOVA, mean values were compared with Tukey’s test. \(P \leq 0.05 \) was considered to indicate significant differences between the treatments.

Results

Effect of exposure to different levels of Hesperidin during pregnancy on immobil-
Immobility time (S) in TST on postpartum mice is presented in Figure 1. As seen, administration of the different levels of the hesperidin (0.5 and 1 mg/kg) at GD 5, 8, 11, 14 and 17 significantly decreased immobility time (s) in TST on postpartum mice compared to control group ($P \leq 0.05$).

![Figure 1. Effect of exposure to different levels of Hesperidin during pregnancy on immobility time (sec) in TST on postpartum mice. TST: tail suspension test. There are significant differences between groups with different superscripts (a, b and c; $P \leq 0.05$).](image)

According to the Figure 2, administration of the hesperidin (0.5 and 1 mg/kg) at GD 5, 8, 11, 14 and 17 significantly decreased immobility time (S) in FST on postpartum mice compared to control group ($P \leq 0.05$).

![Figure 2. Effect of exposure to different levels of Hesperidin during pregnancy on immobility time (sec) in FST on postpartum mice. FST: forced swimming test. There are significant differences between groups with different superscripts (a, b and c; $P \leq 0.05$).](image)
However, pre-partum exposure to the hesperidin (0.1, 0.5 and 1 mg/kg) had no significant effect on OFT following delivery compared to control group ($P>0.05$) (Figure 3).

As seen in Figure 4, administration of the hesperidin (0.5 and 1 mg/kg) during the GD significantly decreased MDA levels on postpartum mice compared to control group ($P\leq0.05$). Furthermore, administration of the hesperidin (0.5 and 1 mg/kg) significantly increased GPx levels on postpartum mice compared to control group ($P\leq0.05$) (Figure 5).
Pre-partum exposure to the hesperidin (0.1, 0.5 and 1 mg/kg) significantly increased SOD levels on postpartum mice compared to control group ($P \leq 0.05$) (Figure 6) but had no significant effect on TAC following delivery compared to control group ($P > 0.05$) (Figure 7).

Figure 6. Effect of exposure to different levels of Hesperidin during pregnancy on postpartum serum superoxide dismutase (SOD) level in mice. There are significant differences between groups with different superscripts (a and b; $P \leq 0.05$).

![Graph showing SOD levels](image1)

Figure 7. Effect of exposure to different levels of Hesperidin during pregnancy on postpartum serum total antioxidant capacity (TAC) in mice.

![Graph showing TAC levels](image2)

Discussion

Depression is a common, chronic, recurrent illness with severe morbidity. Although a number of research studies have been done on its physiological mechanisms, brain areas underlying this disorder are not yet well understood. Postpartum depression is a severe mood disorder which happens right away after childbirth and is observed by sadness and anxiety in mothers (O’Hara and McCabe, 2013). According to the results, administration of the different doses of hesperidin (0.5 and 1 mg/kg) at GD 5, 8, 11, 14 and 17 significantly decreased immobility time in TST and FST on postpartum mice compared to control group. Hesperidin (1 mg/kg) significantly reduced immobility time in FST in mice (Filho et al., 2013). In a similar study, it was reported hesperidin (50 mg/kg) improved depressive-like behavior in the TST and memory in the Morris water maze test (Antunes et al., 2014). The antidepressant-like effect of hesperidin has been reported in FST and TST tests (Souza et al., 2013). Moreover, hesperidin suppressed depressive-like behaviors in TST using intra-striatal injection of 6-hydroxydopamine in Parkinson's disease (Antunes et al., 2014). Hesperidin...
(25, 50 and 100 mg/kg) had anti-depressant effect in diabetic rats (El-Marasy et al., 2014), our results were in agreement with the reports.

Immobility time in FST resembles a state of despair and mental depression. Stress-induced depression like behavioral alterations are routinely determined by TST and FST in rodents. Immobility time in TST and FST reflects the behavioral despair which is similar to depression in human (Walia and Gihotra, 2016). Differences on neurochemical pathways of the FST and TST have been reported. Despite the tests seems very similar but because of pharmacokinetic and pharmacodynamic factors, their accuracy are different (Amin et al., 2015). We also studied effect of the hesperidin on locomotor activity using open field test. As observed, pre-partum exposure to the hesperidin (0.1, 0.5 and 1 mg/kg) had no significant effect on OFT following delivery. It is revealed hesperidin at the levels of 0.1, 0.5 and 1 mg/kg, had no sedative effect, our finding was similar to this report.

Bioavailability is a key step in ensuring the bio efficacy of hesperidin which is affected by physiological conditions. It is selectively metabolized by both cytochrome P450 isoforms (CYP1A and CYP1B1) to eriodictyol, indicating that there is O-demethylation of hesperidin in liver. It has higher bio activity compared to the other flavonoids which can be related to the inhibition of phase II metabolism (glucuronidation and sulfation of hesperidin). The metabolites of hesperidin are detected in urine but not in feces. In oral administration, more than 40% of the radioactivity of hesperidin -3-14C was expired as carbon dioxide which indicates further bacterial degradation in the colon than blood circulation (Roohbakhsh et al., 2014). The ability of hesperidin to cross the blood brain barrier makes it an ideal bioactive substance for treatment of CNS disorders (Iranshahi et al., 2015). Hesperidin decreases risk of Parkinson's disease as well as Alzheimer's disease in flavonoid deficient patient (Antunes et al., 2014). The neuroprotective role of the hesperidin is mediated via anti-inflammatory and antioxidant activities (Menze et al., 2012). Hesperidin (0.01, 0.3 and 1 mg/kg) has antidepressant-like effect and increased hippocampal brain-derived neurotrophic factor (BDNF) in the hippocampus of mice (Donato et al., 2014). It is reported that nitrate/nitrite levels decreased in the hippocampus of hesperidin-treated mice. Anti-depressant activity of the hesperidin is inhibited by pretreatment with L-arginine (processor of nitric oxide). Also, administration of the hesperidin increased the brain-derived neurotrophic factor (BDNF) level in the hippocampus of mice (Donato et al., 2014). Perhaps, antidepressant-like activity of the flavonoids mediates via BDNF (Hajialyani et al., 2019). Also, it is reported antidepressant effect of hesperidin is also dependent on nitric oxide (NO)/cGMP pathway (Donato et al., 2014). Hesperidin, (0.1, 0.3 and 1 mg/kg), reduced nitrate/nitrite levels in the hippocampus of mice (Donato et al. 2014). It is suggested plasma nitrate levels and nitric oxide synthase (NOS) expression increased in the hippocampus of depressed patients. Inhibition of NOS may decrease immobility time in the TST elicited by hesperidin (Donato et al., 2014). Based on the limitation of the study, we were not able to determine interaction of the hesperidin with NO pathway.

Based on the findings, pre-partum exposure to the hesperidin (0.1, 0.5 and 1 mg/
kg) significantly increased SOD and GPx levels on postpartum mice compared to control group. It is reported that hesperidin has antioxidant protection against free radicals-induced oxidative damage (Hemanth Kumar et al., 2017). However, Antunes et al. (2014) reported hesperidin (50 mg/kg) treatment attenuated the 6-OHDA-induced reduction in GPx, SOD and CAT levels in mouse model of Parkinson’s disease. Also, it is reported hesperidin increased glutathione, SOD, CAT and decreased MDA and nitrite level (Roohbakhsh et al., 2014). Administration of hesperidin (20, 40 and 80 mg/kg) reversed the levels of serum hepatic CAT, SOD, GPx and glutathione S-transferase (GST) enzyme levels (Pari et al., 2015) which is similar to our result. antioxidant activity of hesperidin mediates by radical scavenging activity and ERK/Nrf2 signaling pathway as well (Elavarasan et al., 2012). Injection of the hesperidin (0.5 and 1 mg/kg) during the GD significantly decreased MDA levels on postpartum mice compared to control group. Hesperidin has protective effect against reactive oxygen species (ROS) production and oxidative stress. Hesperidin enhanced antioxidant enzymes CAT, SOD and GST level (Visnagri et al., 2014). The enzymatic antioxidants CAT, SOD, GPx and GST have crucial role on scavenging ROS. There is a correlation between depressive disorders and increased oxidative stress, neuro-inflammation and anti-oxidant defenses (Black et al., 2014).

Hesperidin–therapy is safe, has a non-accumulative nature with lowest adverse effect, even during the pregnancy period (Hajialyani et al., 2019). Hesperidin administered at doses up to 5% for 13 weeks had no mutagenic, toxic, and carcinogenic effects on mice (Garg et al., 2001). In the model of rat colon carcinogenesis, hesperidin decreased intestinal tumor incidents via antioxidant defense with no toxicity to the liver and colon (Aranganathan and Nalini, 2009). Hesperidin is able to decrease streptozotocin–isoproterenol-induced myocardial toxicity (Agrawal et al., 2014). Although hesperidin is a safe phytochemical, possible interactions of this phytochemical should be considered (Hajialyani et al., 2019). In view of our findings, the obtained data indicate hesperidin has protective activity against postpartum depression.

Acknowledgments
The authors thank the Faculty of Veterinary Medicine, Science and Research Branch, Tehran, Iran for their cooperation. This research was conducted as a part of the DVM thesis of the first author.

Conflicts of interest
The authors declared that there are no conflicts of interest.

References

چکیده
زمینه مطالعه: اثرات هیسپیریدین طی آبستنی بر رفتار ضدافسردگی پس از زایمان در موش سوری.

هدف: مطالعه حاضر به منظور بررسی اثرات قرار گرفتن منجمد در معرض هیسپیریدین در دوران آبستنی بر اثرات ضدافسردگی متعاقب را در موش‌های سوری انجام می‌گردد.

روش کار: 12 موش سوری نر و 40 موش ماده بالغ (3-8 ماه) بطور تصادفی در کارهای گردشی نگهداری شدند و پس از تولد و سالنگی آنها در 2 گروه به 8 ترکیب متفاوت تقسیم شدند. گروه اول از 8 ترکیب آبستنی با هیسپیریدین و گروه دوم از 8 ترکیب آبستنی کنترل بدون هیسپیریدین در دوران سه روز پس از زایمان در گروه 1 و 5 روز پس از زایمان در گروه 2 تزریق می‌شد. تزریق اکسید حرارتی با داروی تیتان (TAC) مطایعه نمونه خون این گروه و تزریق دی‌ای‌پی مانند گلوتامینی پر/پکسیرال (GPx) و سوپراکسید دی‌وی‌تاز (SOD) باعث شد.

نتیجه‌گیری نهایی: نتایج نشان داد که قرار گرفتن در تجویز هیسپیریدین در دوران آبستنی اثرات ضدافسردگی را در موش‌های سوری ایجاد می‌کند.

واژه‌کلیدی: آبستنی، هیسپیریدین، ضدافسردگی، آنتی اکسیدان، زایمان، موش.