EPSA1 and VPF genes expression during embryonic and larval development period of Beluga, Huso huso

Document Type : Genetics - Immunology

Author

Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

Abstract

Background: The Endothelial PAS domain-containing protein 1 (EPSA1) is the key transcriptional regulator of hypoxic response and Vascular Permeability Factor (VPF) is an important growth factor for vascular development and angiogenesis. OBJECTIVES: In the present study, the levels of the EPSA1 coding gene and VPF transcripts were evaluated during Larval development of Beluga, Huso huso. METHODS: Samples at 12 developmental time-points including 1, 2, 4 days before hatch (eyed eggs), fresh hatched larvae (0), and larvae 1, 3, 6, 10, 15, 20, 25 and 50 days post-hatching were collected and  stored in a −80 °C freezer until RNA extraction. Changes in EPSA1 and VPF mRNA expression were studied and differences in normalized mRNA expression levels among the different developmental stages of H. huso were analyzed by one-way analysis of variance (ANOVA). RESULTS: The transcripts of EPSA1 and VPF were detected in all developmental time-points of H. huso from embryos to fingerling fish. Our results revealed that the mRNA expression of EPSA1 and VPF was low during embryonic development and then upregulated significantly at the time of hatch and early larval time-points, whereas in the late larval development stages they started to decline. CONCLUSIONS: This study showed that there is an association between the EPSA1 and VPF mRNA expression during larval development of H. huso. The up regulation of EPSA1 and VPF transcripts at the time of hatch and during yolk sac fry development of H. huso is likely tied to the role of them in vasculogenesis and angiogenesis.
 

Keywords


Article Title [Persian]

بیان ژنهای EPSA1 و VPF در طی دوره تکامل جنینی و لاروی فیل ماهی (Huso huso)

Author [Persian]

  • علی طاهری میرقائد
گروه بهداشت و بیماریهای آبزیان، دانشکده دامپرشکی دانشگاه تهران، تهران، ایران
Abstract [Persian]

زمینه مطالعه: ژن EPSA1ر(1 Endothelial PAS domain-containing protein)  یک تنظیم کننده رونویسی تحت تأثیر شرایط
هایپوکسی بوده و ژن VPFر(Vascular Permeability Factor)
بعنوان یک فاکتور مهم برای رشد و تکامل عروق خونی می‌باشد. هدف: در
این مطالعه سطوح بیان ژن‌های EPSA1 و VPF در
دوره تکامل لاروی فیل ماهی مورد بررسی قرار گرفت. روش کار:  نمونه برداری از 12 مرحله تکاملی شامل 1، 2 و 4
روز قبل از تفریخ تخم، لارو های تازه تفریخ شده و لاروهای 1، 3، 6، 10، 15، 20، 25
و 50 روز پس از تفریخ  صورت پذیرفت. نمونه‌ها تا زمان انجام
مراحل کار و استخراج RNA در
فریزرoC‌80-  نگهداری شدند. سپس
تغییرات میزان بیان ژن‌های EPSA و VPF  مورد مطالعه قرار گرفت و تفاوت بین بیان ژن‌های مذکور در مراحل
مختلف تکاملی توسط آنالیز واریانس یک طرفه (one-way
ANOVA) مورد بررسی قرار گرفت. نتایج: بیان ژن‌های ژن‌های EPSA و VPF در
تمامی مراحل تکاملی جنینی و مراحل ابتدایی لاروی صورت پذیرفت. نتایج نشان داد که
بیان ژن‌های ژن‌های EPSA و VPF  در دوره جنینی پایین بوده  و سپس در زمان تفریخ و مراحل ابتدایی تکامل
لاروی افزایش در بیان مشاهده شد  درحالیکه
با افزایش سن لارو بیان ژن‌های مذکور روند
رو  به کاهش داشت. نتیجه گیری نهایی:
این مطالعه نشان می‌دهد که ارتباط
تنگاتنگی بین ژن‌های ژن‌های EPSA و VPF در
مراحل تکامل لاروی فیل ماهی وجود دارد و افزایش بیان ژن‌ها مذکور در مراحل
ابتدای تفریخ و مراحل تکاملی لاروی جذب زرده فیل ماهی،  نشان دهنده اهمیت آن در تکامل رگزایی می‌باشد

Keywords [Persian]

  • بیان ژن
  • تکامل لاروی
  • ماهی خاویاری
 
Akbarzadeh, A., Farahmand, H., Mahjoubi, F., Nematollahi, M.A., Leskinen, P., Rytkonen, K., Nikinmaa, M. (2011) The transcription of L-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbic acid, during development of Persian sturgeon Acipenser persicus. Comp Biochem Physiol B. 158: 282-288.
Blancher, C., Moore, J.W., Talks, K.L., Houlbrook, S., Harris, A.L. (2000) Relationship of Hypoxia-Inducible Factor (HIF)-1a and HIF-2a expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res. 60: 7106-7113
Bonventre, J.A., White, L.A., Cooper, K.R. (2011) Methyl tert butyl ether targets developing vasculature in zebrafish (Danio rerio) embryos. Aquat Toxicol. 105: 29-40.
Bracken, C.P., Whitelaw, M.L., Peet, D.J. (2003) The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci. 60: 1376-1393.
Breier, G. (2000) Angiogenesis in embryonic development: A Review. Placenta. 14: 11-15.
Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., Nagy, A. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 380: 435-439.
Dvorak, H.F., Brown, L.F., Detmar, M., Dvorak, A.M. (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 146: 1029-1039.
Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., Semenza, G. (1996) Activation of vascular endothelial growth factor gene transcription by Hypoxia-Inducible Factor 1. Mol Cell Biol. 16: 4604-4613.
Hendon, L.A., Carlson, E.A., Manning, S., Brouwer, M. (2008) Molecular and developmental effects of exposure to pyrene in the early life-stages of Cyprinodon variegatus. Comp Biochem Physiol C. 147: 205-215.
Holmes, D.I., Zachary, I. (2005) The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 6: 209.
Kajimura, S., Aida, K., Duan, C. (2006) Understanding Hypoxia-Induced Gene Expression in Early Development: In Vitro and In Vivo analysis of hypoxia-inducible factor 1-regulated Zebra fish insulin-like growth factor binding protein 1gene expression. Mol Cell Biol. 26: 1142-1155.
Kallergi, G., Markomanolaki, H., Giannoukaraki, V., Papadaki, M.A., Strati, A., Lianidou, E.S., Georgoulias, V., Mavroudis, D., Agelaki, S. (2009) Hypoxia-inducible factor-1α and vascular endothelial growth factor expression in circulating tumor cells of breast cancer patients. Breast Cancer Res. 11: R84-12.
Ke, Q., Costa, M. (2006) Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol. 70: 1469-1480.
Kolangi Miandare, H., Farahmand, H., AKbarzaeh, A., Ramzanpour, S., Kaiya, H., Miyazato, M., Rytkonen, K.T.,  Nikinmma, M. (2013) Developmental transcription of gene putatively associated with growth in two sturgeon species of different growth rate. Gen Comp Endocr. 182: 41-47.
Levy, A.P., Levy, N.S., Wegner, S., Goldberg, M.A. (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem. 270: 13333-13340.
Liang, L., Xu X., Chin A.J., Balasubramaniyan, N.V., Teo, M.A.L., Lam, T.J., Weinberg, E.S., Ge, R. (1998) Cloning and characterization of vascular endothelial growth factor (VEGF) from zebrafish, Danio rerio. Biochim Biophys Acta. 1397: 14-20.
Liang, L., Chang, J.R., Chin, A.J., Smith, A., Kelly, C., Weinberg, E.S., Ge, R. (2001) The role of vascular endothelial growth factor (VEGF) in vasculogenesis, angiogenesis, and hematopoiesis in zebrafish development. Mech Dev. 108: 29-43.
Livak, K.J., Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25: 402-408.
Losso, J.N., Bawadi, H.A. (2005) Hypoxia Inducible factor pathways as targets for functional foods. J Agric Food Chem. 53: 3751-3768.
Iuchi, I., Yamamoto, M. (1983) Erythropoiesis in the developing rainbow trout, Salmo gairdneri irideus: histochemical and immunochemical detection of erythropoietic organs. J Exp Zool. 226: 409-417.
Miquerol, L., Langille, B.L., Nagy, A. (2000) Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development. 127: 3941-3946.
Nikinmaa, M., Rees, B.B. (2005) Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol. 288: 1079-1090.
Ober, E.A., Olofsson, B., Makinen, T., Jin, S.W., Shoji, W., Koh, G.Y., Alitalo, K., Stainier, D.Y.R. (2004) VEGFc is required for vascular development and endoderm morphogenesis in zebrafish. EMBO Rep. 5: 78-84.
Radonic, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., Nitsche, A. (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 313: 856-862.
Ryan, H.E., Lo, J., Johnson, R.S. (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 17: 3005-3015.
Rytkonen, K.T., Vuori, K.A.M., Primmer, C.R., Nikinmaa, M. (2007) Comparison of hypoxia-inducible factor-1 alpha in hypoxia-sensitive and hypoxia-tolerant fish species. Comp Biochem Physiol D. 2: 177-186.
Vuori, K.A., Soitamo, A., Vuorinen, P.J., Nikinmaa, M. (2004) Baltic salmon (Salmo salar) yolk sac fry mortality is associated with disturbances in the function of hypoxia-inducible transcription factor (HIF-1 alpha) and consecutive gene expression. Aquat Toxicol. 68: 301-313.
Vuori, K.A., Paavilainen, T., Nikinmaa, M. (2009) Molecular markers of yolk sac fry development in nine families of lake trout. J Aquat Anim Health. 21: 279-289.
Wells, P., Pinder, A. (1996) The respiratory development of Atlantic salmon, I. Morphometry of gills, yolk sac, and body surface. J Exp Biol. 199: 2725-2736.