پالس- فیلد ژل الکتروفورز جدایه های سالمونلا اینفنتیس جدا شده از طیور

نوع مقاله : عوامل عفونی - بیماریها

نویسندگان

1 گروه بیماریهای طیور دانشکده دامپزشکی دانشگاه تهران تهران، ایران

2 گروه باکتریولوژی، مرکز میکروبیولوژی، انستیتو پاستور ایران، تهران، ایران

چکیده

زمینه مطالعه: سالمونلا به عنوان یکی از مهمترین عوامل زوئونوز که انسان، حیوانات و از جمله طیور را آلوده می‌نماید، شناخته شده است. سالمونلا اینفنتیس یکی از 15 سرووار سالمونلا است که مکرراً در سراسر جهان از منابع مختلف جدا می‌شود. علیرغم اهمیت بالینی آن، اطلاعات کمی در مورد خصوصیات ملکولی جدایه‌های سالمونلا اینفنتیس جدا شده در ایران موجود است.  
هدف: هدف از این مطالعه عمدتاً طبقه بندی نمودن تعدادی از جدایه‌های سالمونلا اینفنتیس به دست آمده از گله های مختلف در ایران در یک دهه گذشته با استفاده از تکنیک پالس- فیلد ژل الکتروفورز بود.
روشها: تعداد 45 جدایه سالمونلا اینفنتیس، عمدتاً از گله‌های طیور ایران،  با استفاده از تکنیک پالس- فیلد ژل الکتروفورز و بر اساس پروتکل CDC PulseNet مورد مطالعه قرار گرفتند.
نتایج: با بهره‌گیری از تکنیک پالس- فیلد ژل الکتروفورز، تعداد 27 پالسوتایپ و 8 کلاستر در بین 45 جدایه مورد مطالعه بر‌اساس تعداد باند‌های مشاهده شده در پالسوتایپ‌ها آشکار شد. توزیع جدایه‌ها در بین پالسوتایپ‌ها متنوع بود و از یک تا 9 جدایه را شامل شد. یکی از پالسوتایپ‌ها شامل 9 (20%) جدایه بود. شباهت ژنوتیپی در بین 45 جدایه بیش  از 90% بود.
نتیجه گیری نهایی: نتایج این مطالعه ارزش تکنیک پالس- فیلد ژل الکتروفورز در تعیین میزان تشابه ژنتیکی در بین جدایه‌های  سالمونلا اینفنتیس را نشان داد. با توجه به تشابه ژنتیکی بالا در بین جدایه‌های سالمونلا اینفنتیس این مطالعه که توسط پالس- فیلد ژل الکتروفورز نشان داده شد، به نظر می‌رسد عمده جدایه‌های سالمونلا اینفنتیس مطالعه حاضر ممکن است از یک جد مشترک منشاء گرفته باشند که سپس در طول زمان با هم به مقدار کمی متفاوت شده باشند و آلودگی گله‌های طیور و احتمالاً انسان را باعث شده باشند.

کلیدواژه‌ها


Introduction

Salmonella is an important zoonotic agent known to infect humans and a wide range of animals, including poultry (Velge et al., 2005). More than 2600 serovars of Salmonella enterica have been recognized from all over the world and almost all are able to cause illness in humans and animals (Guibourdenche et al., 2010). Salmonella enteritidis and Salmonella typhimurium are considered as the most important Salmonella infecting poultry and its product worldwide. Salmonella control plan for the reduction of Salmonella typhimurium and Salmonella enteritidis in broilers was initiated in 2001 and resulted in a decrease of these serovars. In the last few years, the number of non-typhoidal Salmonellosis has increased in Iran and other parts of the world (Woo, 2005; Marimón et al., 2006; Zahraei Salehi et al., 2011; Sandt et al., 2013). Non-typhoidal Salmonellosis is one of the leading causes of hospitalization and death from foodborne illnesses. The Center for Disease Control and Prevention (CDC) has estimated that 9.4 million foodborne illnesses, 55,961 hospitalizations and 1351 deaths occur in the United States each year (Scallan et al., 2011). Salmonella Infantis is one of the 15 most frequently isolated serovars throughout the world (Hendriksen et al., 2011). Salmonella Infantis is a common serotype in livestock production and it is consistently isolated from broiler chickens (Hauser et al., 2012; Sasaki et al., 2012). The risk groups of infection with ser. Enteritidis are infants (under 3 months of age), the elderly, and the immunocompromised (CDC, 1990. Update). The number of infections and diseases caused by the serotype Salmonella Infantis started to increase in the last decades (Ungvári et al., 2007). So far, Salmonella Infantis is the most widespread serovar among animals and the third most common cause of human salmonellosis. Salmonella Infantis has been isolated from veterinary and human hospitals, foods such as vegetables and meat and production animals such as broiler chickens (Dunowska et al., 2007, Nógrády et al., 2008; Shahada et al., 2006). Besides the occurrence in animals, S. Infantis has been associated with cases of human salmonellosis and is implicated in nosocomial infections in veterinary hospitals (Fonseca et al., 2006; Dunowska et al., 2007) or food poisoning (Kohl and Farley, 2000; Najjar et al., 2012) in several countries. According to the global distribution of reported serotypes, S. Infantis was one of the highest ranked salmonellae (Galanis et al., 2006). Identification of different strains is essential for the successful epidemiological investigation of Salmonella enterica outbreaks. Therefore, Salmonella control has become an important objective for the poultry industry from both public health and economic perspectives (Sasaki et al., 2012). Despite its clinical importance, little is known about the molecular characteristics of S. Infantis strains from Iran. Serotyping was the standard procedure for the classification of Salmonella isolates in outbreak investigations prior to the development of molecular genotyping methods. However,  serotyping  has  limited  utility  for  epidemiologic  analysis  of Salmonella transmission, because  it  has  poor  discriminative  ability  for  closely  related isolates (Woo, 2005).

Due to the importance of Salmonella as one of the most important causative agents of food-borne diseases, a variety of phenotypic and genotypic methods have been used to trace the outbreak to the contaminated source and to elucidate the epidemiology of infection (Lukinmaa et al., 2004). Using DNA-based techniques, investigators are now able to better discriminate Salmonella isolates below the level of serotypes. Techniques such as plasmid profile, ribotyping, IS200 fingerprinting, PCR ribotyping, ribosomal DNA intergenic spacer amplification and heteroduplex analysis, amplified fragment length polymorphism, automated 5’ nuclease PCR assay, random amplified polymorphic DNA (RAPD) analysis, enterobacterial repetitive intergenic consensus (ERIC – PCR) and pulsed-field gel electrophoresis (PFGE) have been frequently used by many researchers (Lukinmaa et al., 2004).

The aim of this study was to type 45  S. Infantis isolates obtained from poultry flocks in Iran by pulse-field gel electrophoresis (PFGE).

 

Materials and Methods

 

Bacterial isolates: Since 2005, specimens for Salmonella isolation were collected and cultured in our laboratory as previously described (Morshed and Peighambari, 2010; Abarian et al., 2012). All confirmed Salmonella isolates were stored in tryptic soy broth (TSB) with 25% glycerol at -70 oC for future use. In a subsequent study (Peighambari et al., 2015), 100 group C Salmonella isolates were selected from our laboratory collection and 79 isoaltes were identified as Salmonella Infantis by PCR as described by Kardos et al. (2007). In this study, 45 Salmonella Infantis isolates from our laboratory collection including isolates from broiler, broiler breeder and commercial layer farms and two human isolates were investigated (Table 1). All 45 selected isolates for this study were re-confirmed by PCR as Salmonella Infantis (Kardos et al., 2007).

Pulsed-Field Gel Electrophoresis (PFGE): Forty five Salmonella Infantis isolates were subjected to PFGE according to the standardized Salmonella protocol of the CDC PulseNet (PNL05, last upadated April 2013) but with some modifications. Briefly, the cell suspension buffer (100 mM Tris, 100 mM EDTA, and pH 8.0) was adjusted to a turbidity reading of 1 to 1.3. This suspension was mixed in equal parts with molten 2% low-melting point agarose (Sigma, USA), pipetted into disposable molds and then stored at 4 oC for 20 to 30 min. These agarose plugs were incubated overnight at 56 oC in 1 ml of lysis buffer (0.5 M EDTA, 0.5 M Tris, 1% N-laurylsarcosine) (Sigma, UK) with proteinase K (Fermentas, Spain) at a final concentration of 250 μg/mL. A total of six washes (twice with sterile ultrapure water and four times with 0.01 M Tris-EDTA buffer, pH 8.0) were used to remove excess reagents and cell debris from the lysed plugs. Chromosomal DNA was digested with 30 U of XbaI (Fermentas, Lithuania) for 3 h in a water bath at 37 oC. Electrophoresis was carried out with 0.5x TBE buffer at 6 V/cm and 14 oC by CHEF DRIII system (Bio-Rad, USA). The running time was 20 h and the pulse ramp time was 5 to 30 s. Salmonella enterica serotype Braenderup, strain H9812 was used as a size marker. The gels were visualized on a UV transilluminator, and photographs were captured by a digital imaging system (Video Gel-Doc System, Bio-Rad) and conversion of gel images to the TIFF file format. DNA fragments patterns were analyzed with Gel Compare II software (Applied Maths, Kortrijk, Belgium). Isolates that exhibited similarity cut-off ≥ 80% were considered as a pulsotype (Tenover et al., 1995). Reproducibility power was confirmed by comparing the fingerprint patterns obtained from duplicate runs of the same isolates.

 

 

Table 1. List of Salmonella Infantis isolates used in this study and the relevant data

No.

Lab no.

Dendogram no.

Source1

Farm/House

Province/ Isolation date

Pulsotype

Cluster2

1

77

32

Broiler feces

F5/H4

Tehran/ 11.2005

1

-

2

89

34

Broiler feces

F6

Tehran/12.2005

2

-

3

72

11

Broiler feces

F5/H4

Tehran/11.2005

3

I

4

38

22

BCWRW

Abattoir

Tehran/09.2005

3

I

5

25

4

BCWRW

Abattoir

Tehran/09.2005

3

I

6

140

26

BCWRW

Abattoir

Tehran/09.2005

4

I

7

107

15

DOC

F8

Tehran/03.2006

5

I

8

108

16

DOC

F8

Tehran/03.2006

6

I

9

7

1

BCWRW

Abattoir

Tehran/09.2005

7

I

10

8

2

BCWRW

Abattoir

Tehran/09.2005

7

I

11

50

3

BCWRW

Abattoir

Tehran/09.2005

7

I

12

148

43

BCWRW

Abattoir

Tehran/09.2005

7

I

13

151

44

BCWRW

Abattoir

Tehran/09.2005

7

I

14

152

46

BCWRW

Abattoir

Tehran/09.2005

7

I

15

155

47

BCWRW

Abattoir

Tehran/09.2005

7

I

16

157

48

BCWRW

Abattoir

Tehran/09.2005

7

I

17

159

49

BCWRW

Abattoir

Tehran/09.2005

7

I

18

84

19

Broiler feces

F5/H5

Tehran/11.2005

8

I

19

83

24

Broiler feces

F5/H5

Tehran/11.2005

9

I

20

65

9

Broiler Liver

F5/H3

Tehran/11.2005

9

I

21

70

42

Broiler feces

F5/H4

Tehran/11.2005

10

I

22

75

21

Broiler feces

F5/H4

Tehran/11.2005

11

I

23

36

6

BCWRW

Abattoir

Tehran/09.2005

11

I

24

88

12

Broiler feces

F5/H5

Tehran/12.2005

12

I

25

184

37

BCWRW

Abattoir

Tehran/09.2005

13

II

26

185

38

BCWRW

Abattoir

Tehran/09.2005

13

II

27

87

33

Broiler feces

F5/H5

Tehran/12.2005

14

II

28

31

29

BCWRW

Abattoir

Tehran/09.2005

15

III

29

48

30

BCWRW

Abattoir

Tehran/09.2005

15

III

30

73

31

Broiler feces

F5/H4

Tehran/11.2005

16

IV

31

163

36

BCWRW

Abattoir

Tehran/09.2005

17

IV

32

80

23

Broiler feces

F5/H4

Tehran/11.2005

18

-

33

290

50

BCWRW

Abattoir

Ghazvin/10.2008

19

-

34

69

10

Broiler feces

F5/H4

Tehran/11.2005

20

V

35

86

25

Broiler feces

F5/H5

Tehran/11.2005

21

V

36

52

7

BCWRW

Abattoir

Tehran/09.2005

22

VI

37

53

8

BCWRW

Abattoir

Tehran/09.2005

22

VI

38

39

17

BCWRW

Abattoir

Tehran/09.2005

23

VI

39

85

20

Broiler feces

F5/H5

Tehran/11.2005

23

VI

40

5

45

Broiler Liver

F3

Tehran/07.2005

24

VI

41

143

27

BCWRW

Abattoir

Tehran/09.2005

25

VII

42

142

28

BCWRW

Abattoir

Tehran/09.2005

25

VII

43

35

5

BCWRW

Abattoir

Tehran/09.2005

26

-

44

339

39

Human feces

Hospital

Tehran/07.2006

27

VIII

45

340

40

Human feces

Hospital

Tehran/07.2006

27

VIII

1BCWRW = Broiler carcasses wash and rinse water; DOC = Day-old chicks

2Based on similarty more than 90%.

 

 

 

 

 

 

Results

 

We analyzed the 45 samples of Salmonella Infantis by PFGE and then by Video Gel-Doc System. The data was analyzed with Bio-Rad software and a dendogram was drawn. PFGE revealed 27 pulsotypes and eight clusters among 45 isolates based on the number of observed bands among the pulsotypes and has been demonstrated in Table 1 and Fig. 1. The distribution of 45 isolates among the 27 pulsotypes was variable. Seventeen (37.8%) isolates each belonged to a single pulsotype, 16 (35.5%) isolates belonged to eight pulsotypes each including two isolates, one pulsotype contained three (6.7%) isolates and the remaining nine isolates (20%) were placed in one pulsotype (Fig. 2). The genotypic similarity among 27 pulsotypes was more than 90%. Most of the pulsotypes that included more than one Salmonella Infantis isolate had been recovered from broiler carcasses wash and rinse water in poultry abattoirs (Table 1). There was only one pulsotype with two isolates from the same farm. Majority of isolates, even in some cases from the same farm, were distributed in different pulsotypes.

 

Discussion

 

This study examined the molecular epidemiology of 45 Salmonella Infantis isolates obtained since the year 2005 from poultry sources in different regions of the country using PFGE.

Salmonella Infantis is the third most common serovar isolated from humans in Europe since 2006 with an increased rate of infection from 1% in 2006 to 2.2% in 2010 (Rašeta et al., 2014). The application of pulsed-field gel electrophoresis (PFGE) has been proven to be useful for establishing genetic relatedness of different bacterial strains including Salmonella enterica strains (Fonseca et al., 2006; Foley et al., 2009; Gal-Mor et al., 2010; Almedia et al., 2013). PFGE is a powerful and reliable method, and is able to analyze the entire microbial genome and is very efficient due to its repeatability, reproducibility and ability to discriminate between different bacterial strains. However, PFGE is expenseive and time consuming because it takes more than 5 days to get the end results. Currently, PFGE is commonly used in epidemiological studies to trace back outbreaks associated with a particular pathogen. PFGE is the current gold standard subtyping method for foodborne bacterial pathogens used by PulseNet, the national molecular subtyping network for foodborne disease surveillance in the United States (Swaminathan et al., 2001).

PFGE has been successfully used worldwide to type S. Infantis strains isolated from different sources, elucidating outbreaks and their epidemiology (Lindqvist and Pelkonen, 2007; Nógrády et al., 2007, 2008, 2012; Ungvari et al., 2007; Abbasoglu and Akcelık, 2011; Hauser et al., 2012; Rašeta et al., 2014). Abbasoglu and Akcelık (2011) showed three distinct PFGE patterns among 20 S. Infantis isolates after digestion of each isolate’s chromosomal DNA with XbaI. Rašeta et al. (2014) used PFGE to determine genetic similarity between five S. Infantis isolates from diseased humans and 22 isolates from broiler carcasses. Cluster analysis showed the presence of seven profiles and 92% genetic similarity among all isolates indicating S. Infantis as a hazard to human health. In Brazil, between 1984-2009, Almedia et al (2013) investigated the molecular epidemiology of S. Infantis isolates, 25 from human sources and 10 from food items, using ERIC-PCR, PFGE and MLST. Thirty-two S. Infantis isolates demonstrated a similarity ≥80.6% in PFGE while 34 isolates showed a high genetic similarity of  ≥93.7% in ERIC-PCR. Due to high genetic similarity among the isolates, Almedia et al (2013) suggested that a prevalent subtype was the cause of human disease and food contamination during the 25 year period in São Paulo State, Brazil. These researchers expressed that both ERIC-PCR and PFGE were sufficienty adequate methods for long-term epidemiological surveys but concluded that PFGE was more efficient for Salmonella subtyping due to its higher discrimination power. In another study (Nógrády et al., 2012), a high genetic similarity of 92% was found between the 76 isolates of S. Infantis in the period of 2004 to 2009 from broiler meat and broiler feces. In Hungary, during 2006-2007, 164 isolates of S. Infantis were divided in two clusters, whereas the genomes showed similarity more than 88.7% (Nogrady et al., 2007; 2008)

In Iran, only a few recently published reports involve the use of PFGE for characterization of Salmonella serotypes isolated from poultry (Zahraei Salehi  et al., 2011; Rahmani et al., 2013; Golab et al., 2014). Zahraei Salehi et al. (2011) studied Salmonella enterica spp. isolates from human and animal origin using PFGE and ERIC-PCR and reported the PFGE as the most effective molecular typing technique (Zahraei Salehi et al., 2011). Rahmani et al. (2013) expressed the value of PFGE typing to determine the epidemiologic distribution of 27 S. Infantis isolates from three northern provinces of Iran, and showed two distinct PFGE patterns among the 27 isolates and revealed highly similar PFGE patterns indicating clonal relatedness across different geographical locations.  

Golab et al. (2014) used PFGE and serotyping to subtype 47 Salmonella isolates belonging to 22 different serotypes derived from poultry. Thirty-nine PFGE patterns among 47 isolates were demonstrated. They indicated that PFGE testing played a key role in distinguishing outbreak-related Salmonella isolates from unrelated sporadic isolates.

In the present study, PFGE revealed 27 profiles and eight clustes with a genotypic similarity more than 90%. The increasing rate of Salmonella Infantis infection among poultry flocks in Iran have been reported  previously (Rahmani et al., 2013; Peighambari et al, 2015). Our results are in agreement with other workers who reported that PFGE is one of the most reliable techniques for discriminating different serotypes of Salmonella (Chen et al., 2011; Almedia et al., 2013; Fendri et al., 2013). In fact, using PFGE is a more preferable and logical approach in analysis of a bacterial genome because it covers almost the whole genome compared to other techniques that only study part of the genome. Our findings showed that most of the pulsotypes which included more than one single isolate had been recovered from poultry abattoirs. This finding indicates that during the processing of poulty carcasses, the contamination speads in the abattoir and, therefore, the origin of isolates might rationally be from a single clone. Most of the isolates even in some cases from the same farm belonged to different pulsotypes but still there was more than 90% genotypic homogenicity among the isolates. There were two human isolates of S. Infantis, both of which belonged to one pulsotype other than pulsotypes from poultry origin, but these two isolates also showed more than 90% genotypic similarity with poultry-originated isolates. This finding reinforces previous investigations that considered S. Infantis as a hazard to human health (Almedia et al., 2013; Rašeta et al., 2014). Like us, researchers around the world  have reported the high genetic similarty among S. Infantis isolates recoverd from different sources in their own countries (Fonseca et al., 2006; Gal-Mor et al., 2010; Almedia et al., 2013).  

This study showed the value of PFGE in determining the genotypic similarity among S. Infantis isolates. The high discriminatory power of PFGE methodology was also demonstrated in this work.  The higher efficiency of PFGE in comparison to other typing methods such as plasmid profile, ERIC-PCR or RAPD-PCR in discriminating Salmonella isolates has also been reported by other researchers (Zahraei Salehi et al., 2011; Almedia et al., 2013; Rašeta et al., 2014). Therefore, PFGE is still considered the preffered method for typing Salmonella isolates. 

 

Acknowledgments

 

This research was funded by a grant (No. 7508007/6/29) from the Research Council of the University of Tehran.

Abbasoglu, D., Akcelık, M. (2011) Phenotypic and genetic characterization of multidrug-resistant Salmonella Infantis strains isolated from broiler chicken meats in Turkey. Biologia. 66: 406-410. ##
Almeida, F., Pitondo-Silva, A., Oliveira, M.A., Falcão, J.P. (2013) Molecular epidemiology and virulence markers of Salmonella Infantis isolated over 25 years in São Paulo State, Brazil. Infect Genet Evol. 19: 145-151. ##
Chen, M.H., Hwang, W.Z., Wang, S.W., Shih, Y.C., Tsen, H.Y. (2011) Pulsed field gel electrophoresis (PFGE) analysis for multidrug resistant Salmonella enterica serovar Schwarzengrund isolates collected in six years (2000–2005) from retail chicken meat in Taiwan. Food Microbiol. 28: 399-405.##
Dunowska, M., Morley, P., Traub‐Dargatz, J., Davis, M, Patterson, G., Frye, J., Hyatt, D., Dargatz, D. (2007) Comparison of Salmonella enterica serotype Infantis isolates from a veterinary teaching hospital. J App Microbiol. 102: 1527-1536. ##
Fendri, I., Hassena, A.B., Grosset, N., Barkallah,M., Khannous, L., Chuat, V., Gautier, M., Gdoura, R. (2013) Genetic diversity of food-isolated Salmonella strains through pulsed field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus (ERIC-PCR). PLoS One. 8: e81315.  ##
Foley, S.L., Lynne, A.M., Nayak, R. (2009) Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. Infect Genet Evol. 9: 430-440.  ##
Fonseca, E., Mykytczuk, O., Asensi, M., Reis, E., Ferraz, L., Paula, F., Ng, L., Rodrigues, D. (2006) Clonality and antimicrobial resistance gene profiles of multidrug-resistant Salmonella enterica serovar Infantis isolates from four public hospitals in Rio de Janeiro, Brazil. J Clin Microbiol. 44: 2767-2772. ##
Galanis, E., Lo Fo Wong, D.M., Patrick, M.E., Binsztein, N., Cieslik, A., Chalermchaikit, T., Aidara-Kane, A., Ellis, A., Angulo, F.J., Wegener, H.C. (2006) Web-based surveillance and global Salmonella distribution, 2000–2002. Emerg Infect Dis. 12: 381-388. ##
Golab, N., Khaki, P, Noorbakhsh, F. (2014) Molecular typing of Salmonella isolates in poultry by pulsed-field gel electrophoresis in Iran. Int J Enteric Pathog. 2: e21485.##
Gal-Mor, O., Valinsky, L., Weinberger, M., Guy, S., Jaffe, J., Schorr, Y.I., Raisfeld, A., Agmon, V., Nissan, I. (2010) Multidrug-resistant Salmonella enterica serovar Infantis, Israel. Emerg Infect Dis. 16: 1754–1757.
Guibourdenche, M., Roggentin, P., Mikoleit, M., Fields, P.I., Bockemühl, J., Grimont, P.A.,  Weill, F.X. (2010). Supplement 2003–2007 (No. 47) to the White-Kauffmann-Le minor scheme. Res Microbiol. 161: 26-29.##
Hauser, E., Tietze, E., Helmuth, R., Junker, E.,,Prager, R., Schroeter, A., Rabsch, W., Fruth, A., Toboldt, A., Malorny, B. (2012) Clonal dissemination of Salmonella enterica serovar Infantis in Germany. Foodborne Pathog Dis. 9: 352-360. ##
Hendriksen, R. S., Vieira, A.R., Karlsmose, S., Lo Fo Wong, D.M., Jensen, A.B., Wegener, H.C., Aarestrup, F.M. (2011) Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis. 8: 887-900. ##
Kardos, G., Farkas, T., Antal, M., Nogrady, N., Kiss, I. (2007) Novel PCR assay for identification of Salmonella enterica serovar Infantis. Lett App Microbiol. 45: 421-425. ##
Kohl, K., Farley, T. (2000) Initially unrecognized distribution of a commercially cooked meat product contaminated over several months with Salmonella serotype Infantis. Epidemiol Infect. 125: 491-498.
Lindqvist, N., Pelkonen, S. (2007) Genetic surveillance of endemic bovine Salmonella Infantis infection. Acta Vet Scand. 49: 15.##
Lukinmaa, S., Nakari, U.M, Eklund, M., Siitonen, A. (2004) Application of molecular genetic methods in diagnostics and epidemiology of food-borne bacterial pathogens. APMIS. 112: 908-929. ##
Marimón, J.M., Gomáriz, M., Zigorraga, C., Cilla, G., Pérez-Trallero, E. (2004) Increasing prevalence of quinolone resistance in human nontyphoid Salmonella enterica isolates obtained in Spain from 1981 to 2003. Antimicrob Agents Chemother. 48: 3789-3793. ##
Morshed, R., Peighambari, S.M. (2010) Salmonella infections in poultry flocks in the vicinity of Tehran. Int J Vet Res. 4: 273-276.  ##
Najjar, Z., Furlong, C., Stephens, N., Shadbolt, C., Maywood, P., Conaty, S., Hogg, G. (2012) An outbreak of Salmonella Infantis gastroenteritis in a residential aged care facility associated with thickened fluids. Epidemiol Infect. 140: 2264-2272.##
Nógrády, N., Kardos, G., Bistyak, A., Turcsányi, I., Mészáros, J., Galántai, Z., Juhász, A., Samu, P., Kaszanyitzky, J., Pászti, J. (2008) Prevalence and characterization of Salmonella Infantis isolates originating from different points of the broiler chicken–human food chain in Hungary. Int J Food Microbiol. 127: 162-167.  ##
Nógrády, N., Király, M., Davies, R., Nagy, B. (2012) Multidrug resistant clones of Salmonella Infantis of broiler origin in Europe. Int J Food Microbiol 157: 108-112. ##
Nógrády, N., Tóth, Á., Kostyák, Á., Pászti, J., Nagy, B. (2007) Emergence of multidrug-resistant clones of Salmonella Infantis in broiler chickens and humans in Hungary. J Antimicrob Chemother. 60: 645-648.##
Peighambari, S.M., Akbarian, R., Morshed, R., Yazdani, A. (2013) Characterization of Salmonella isolates from poultry sources in Iran. Iranian J Vet Med. 7: 35-41.##
Peighambari, S.M., Sorahi Nobar, M., Morshed, R. (2015) Detection of Salmonella enterica serovar Infantis among serogroup C Salmonella isolates from poultry using PCR and determination of drug resistance patterns. Iran Vet J. 11: 54-60. ##
Rahmani, M., Peighambari, S.M., Svendsen, C.A., Cavaco, L.M., Agersø, Y., Hendriksen, R. S. (2013) Molecular clonality and antimicrobial resistance in Salmonella enterica serovars Enteritidis and Infantis from broilers in three Northern regions of Iran. BMC Vet Res. 9: 66. ##
Rašeta, M., Teodorović, V., Bunčić, O., Katić, V., Branković Lazić, I., Polaćek, V., Vidanović, D. (2014) Antibiotic resistance and molecular studies on Salmonella enterica subspecies enterica serovar Infantis isolated in human cases and broiler carcasses. Acta Vet. 64: 257-268. ##
Sandt, C.H., Fedorka-Cray, P.J., Tewari, D., Ostroff, S., Joyce, K., M’ikanatha, N.M. (2013) A comparison of non-typhoidal Salmonella from humans and food animals using pulsed-field gel electrophoresis and antimicrobial susceptibility patterns. PLoS One 8: e77836. ##
Sasaki, Y., Ikeda, A., Ishikawa, K., Murakami, M., Kusukawa, M., Asai, T., Yamada, Y. (2012) Prevalence and antimicrobial susceptibility of Salmonella in Japanese broiler flocks. Epidemiol Infect. 140: 2074-2081. ##
Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L., Griffin, P.M. (2011) Foodborne illness acquired in the United States - major pathogens. Emerg Infect Dis. 17: 7-15.  ##
Shahada, F., Chuma, T., Tobata, T., Okamoto, K., Sueyoshi, M., Takase, K. (2006) Molecular epidemiology of antimicrobial resistance among Salmonella enterica serovar Infantis from poultry in Kagoshima, Japan. Int J Antimicrob Agents. 28: 302-307.##
Stevens, A., Kerouanton, A., Marault, M., Millemann, Y., Brisabois, A., Cavin, J.F., Dufour, B. (2008) Epidemiological analysis of Salmonella enterica from beef sampled in the slaughterhouse and retailers in Dakar (Senegal) using pulsed-field gel electrophoresis and antibiotic susceptibility testing. Int J Food Microbiol. 123: 191-197. ##
Swaminathan, B, Barrett, T.J., Hunter, S.B., Tauxe, R.V., Force, C.P.T. (2001) PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis. 7: 382-389.##
Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H.,
Swaminathan, B. (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 33: 2233-2239.##
Ungvári, A., Kardos, G., Nógrády, N., Turcsányi, I., Pászti, J., Kiss, I., Bolfa, P., Spînu, M.
 (2007) DNA-fingerprinting and pulsed-field gel electrophoresis of Salmonella enterica serotype Infantis strains isolated from poultry. Lucrări Stiinłifice Med Vet. 40: 182-186.  ##
Velge, P., Cloeckaert, A., Barrow, P. (2005) Emergence of Salmonella epidemics: The problems related to Salmonella enterica serotyp Enteritidis and multiple antibiotic resistance in other major serotypes. Vet Res. 36: 267-288.  ##
Woo, Y.K. (2005) Finding the sources of Korean Salmonella enterica serovar Enteritidis PT 4 isolates by pulsed-field gel electrophoresis. J Microbiol (Seoul, Korea). 43: 424-429. ##
Zahraei Salehi, T., Madadgar, O., Tadjbakhsh, H.,  Mahzounieh, M.R., Feizabadi, M.M. (2011) A molecular study of the Salmonella enterica serovars Abortusovis, Typhimurium, and Enteritidis. Turkish J Vet Anim Sci. 35: 281-294. ##
Zou, W., Chen, H.C., Hise, K.B., Tang, H., Foley, S.L., Meehan, J., Lin, W.J., Nayak, R., Xu, J., Fang, H. (2013) Meta-analysis of pulsed-field gel electrophoresis fingerprints based on a constructed Salmonella database. PLoS One 8: e59224.##