مطالعه فیلوژنی و بررسی وجود ویروس بیماری نیوکاسل در بیماری های تنفسی چند عاملی در گله های گوشتی استان قزوین، 1393-1394

نوع مقاله : عوامل عفونی - بیماریها

نویسندگان

1 گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی واحد کرج، کرج، ایران

2 گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی واحد کرج، کرج، ایران.

چکیده

زمینه مطالعه:  ویروس بیماری نیوکاسل (NDV ) یکی از مهمترین بیماری‌های مسری است که نقش مهمی را در بروز بیماری‌های تنفسی چند عاملی در صنعت طیور ایفا می کند. 
هدف: مطالعة حاضر برای شناسایی و ارزیابی ویروس بیماری نیوکاسل در بیماری‌های تنفسی چند عاملی انجام شد. .  
روش کار: در طول سال های 1393-1394 در استان قزوین مجموع 180 نمونه سواب نایی از 20 گلة صنعتی که با علائم بالینی تنفسی همراه بودند گرفته شد. در آزمایشگاه هر سه نمونه با هم پول شده و به عنوان یک نمونه شناخته شدند، سپس با استفاده از پرایمر اختصاصی آزمایش نسخه برداری معکوس - واکنش زنجیره ای پلی مراز (RT-PCR) بر روی 60 نمونه انجام گردید. نمونه‌های حاصل از 12 گله ی مثبت؛  ارزیابی و سکانس شده و آنالیز فیلوژنی بر اساس شباهت های آمینواسیدی و نوکلئوتیدی در محل ژن F صورت گرفت .
نتایج:  بر اساس یافته های PCR ، 26 نمونه از 60 نمونه ( 43 درصد) و 12 گله از مجموع 20 گله (60 درصد) از نظر وجود ویروس نیوکاسل مثبت ارزیابی شدند. از میان 12 نمونه ی سکانس شده، نشان داده شد که 5 ویروس  (66/41%)  متعلق به سویه ولوژنیک (کلاس دو و تحت ژنوتیپ هفت دی) و 7 ویروس (22/58%) به سویه لنتوژنیک تعلق داشتند. بر اساس آنالیز فیلوژنی و شباهت های نوکلئوتیدی نتیجه‌گیری شد که از لحاظ همولوژی، سویه های واکسینال با سویه های ب 1 و لاسوتا به میزان 100 درصد و جدایه های ولوژن این مطالعه به همین نسبت با سویه‌های قبلی جدا شده در ایران شباهت داشتند.
نتیجه گیری نهایی:  ویروس بیماری نیوکاسل با درصدی بالا در یک کمپلکس تنفسی از جوجه های گوشتی جداشده است. از میان آنها نتیجه شد که جدایه‌های لنتوژن و سویه های واکسینال نیز موجب تشدید کمپلکس تنفسی شوند

کلیدواژه‌ها


Introduction

Intensive poultry farming has provided pre- disposing situations for the prevalence of mul- tifactorial respiratory complex in the farms. Different bacterial and viral agents may cause these infections simultaneously (Glisson, 2013). Based on Iran Veterinary Organization (IVO) statistics, considerable economic dam- age in broiler farms is related to respiratory complications (Ebadzadeh, 2015).

Newcastle disease is known as an import- ant agent in multifactorial respiratory diseas- es; on the other hand, the Newcastle disease (ND) virus plays a major role in the devel- opment of respiratory diseases especially in interactions between other pathogens  such as Ornithobacterium rhinotracheale, infec- tious bronchitis virus (IBV), Mycoplasma gallisepticum, and Mycoplasma synoviae (Hopkins and Yoder Jr, 1982; Weinack et al., 1984). Eleven serotypes of avian paramyxo- virus (APMV-1 to APMV-11) have been identified (Suarez, 2013). Newcastle disease virus, a synonym for the avian Paramyxovi- rus type 1 (APMV-1), is a non-segmented, negative-sense, single-stranded, enveloped RNA virus composed of approximately 15,200 nucleotides (Gogoi et al., 2017; Sam- son, 1988; Zhao et al., 2018).

Newcastle disease virus has a 15kb RNA genome that codes six viral proteins: an RNA directed RNA Polymerase (L), Hemagglu- tinin-Neuraminidase protein (HN), Fusion protein (F), Matrix protein (M), Phosphopro- tein (P) and Nucleoprotein (NP) (Aldous and Alexander, 2001; Lee et al., 2017).

Although different laboratory methods have demonstrated minor antigenic variation between different isolates of NDV, all NDV isolates can become neutral by 1 serotype an- tibodies as they are all from avian APMV-1 serotype. APMV-1 can be grouped into two


 

classes (class I and class II) which are deter- mined based on genetic and antigenic of the F gene. Class I isolates are all grouped into  a single genotype and three subgenotypes. This class is mostly isolated from both wild and domestic birds found in Africa, Asia, Europe, and America and is considered of low virulence in chicken. Class II is most-  ly found with a high rate of virulence. Ac- cording to the recent literature, the class II isolates are classified into genotypes I-XVIII (Bello and Yusoff, 2018).

Newcastle disease with different levels of virulence is contributed to a high rate of mor- bidity and mortality throughout the world (Choi et al., 2014; Kiani et al., 2016). The virus strains may be classified based on mean death time (MDT) as velogenic (highly virulent), mesogenic (intermediate virulence), or lento- genic (nonvirulent) (Brown and Bevins, 2017). Based on OIE (OIE Manual, 2018) the pathogenicity of the virus is determined by the cleavage site of F protein. Aldous pro- posed that genotyping of NDV isolates should become part of diagnostic virus char- acterization for reference laboratories by producing a 375-nucleotide sequence of the F gene, which includes the F0 cleavage site. As a standard assay to characterize NDV strains, genome sequencing and phylogenet- ic analysis of F gene are widely, utilized.The F glycoprotein is responsible for fusion be- tween the cellular and viral membranes and subsequent virus genome penetration (Ald- ous and Alexander, 2001; Glickman et al., 1988; Liu et al., 2015). The sequence of the F protein cleavage site is a major determinant of NDV pathogenicity. The cleavage sites of virulent NDV strains usually contain multi- ple basic residues, whereas avirulent strains have fewer basic residues (Xiao et al., 2012).

 

Behshad Beheshtian et al.                                                               Iranian Journal of Veterinary Medicine

 

 

Comparison of amino acid sequences showed that viruses with a 112-RKRQKRR-116 mo- tif at the C-terminus of the F2 protein and F (phenylalanine) at residue 117, are virulent (Collins et al., 1998; Damena et al., 2016; Hosseini et al., 2014; Panda et al., 2004).

Virulent Newcastle disease virus is now endemic in Iran. Despite the implementa- tion of the various vaccination programs in commercial poultry flocks, a considerable number of ND outbreaks have been report- ed in recent years (Ebrahimi et al., 2012; Hosseini et al., 2014).

The main aim of this study was to investi- gate the role of the Newcastle disease (ND) virus in multifactorial respiratory diseases. Moreover, the involvement of the very vir- ulent Newcastle disease virus (VVND) and lentogenic strains are analyzed in infected flocks. Also, phylogenetic analysis of the fu- sion gene of 5 virulent isolates and Iran iso- lates compared to different reference NDV genotypes was generated.

Materials and Methods

Sampling

A total number of 180 tracheal swab sam- ples were taken from 20 Newcastle vacci- nated commercial broiler flocks in the age of 9-49 days of Qazvin province during 2014-2015. In the laboratory, every 3 swab samples were pooled and finally, 60 sam- ples (3 samples/farm) were tested.

In this study, the infected flocks have been selected based on the presence  of  both the clinical and postmortem respira- tory signs. These flocks are also investi- gated for the presence of some respiratory pathogens such as infectious bronchitis virus (IBV), avian influenza virus (AIV), avian metapneumovirus (aMPV), and my- coplasmas.


RNA extraction and RT-PCR

RNA was extracted by RNA kit (Cinna- Gen Co., IRAN) according to the manufac- turer’s manual. Then, the cDNA was made by Random Hexamer (RH) and Revert Aid first strand cDNA Synthesis Kit (Fermen- tas-Thermo Fisher Scientific, Canada). Part of the F gene which includes the cleavage site sequence was amplified by a pair of primers with the sequence of 5-TTGATGG- CAGGCCTCTTGC-3 and 5-GGAGGAT- GTTGGCAGCATT-3 (Kant et al., 1997).

PCR was carried out in a 50 µl reaction volume consisting of 5 µl of 10 × PCR buffer, 1 µl of 10 mM dNTPs, 1.25 µl of each primer (10 pmol/µl ), 0.25 Taq DNA polymerase (5U/ µl), 1.5 µl 50mM MgCL2,

33.75 µl of dH2O, and 6 µl cDNA dilution, and was programmed in the following con- dition: 94 ˚C for 3 min followed by 35 cy- cles of 95 ˚C for 30 sec, 53 ˚C for 30 sec, 72˚ C for 60 sec, and a final extension at   72 ˚C for 15 min. The PCR products were electrophoresed by 1% agarose gel and vi- sualized under UV (Hosseini et al., 2014).

Sequencing and phylogenetic analysis

Twelve isolates were considered for se- quencing and further analysis. PCR prod- ucts were cut out from the gel and purified by PCR AccuPreb® PCR Purification Kit (Bioneer Co., South Korea) according  to the manufacturer’s instruction. Purified RT- PCR products were sequenced in both for- ward and reverse directions by ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems, USA) and run on an ABI Prism 310 Genetic Analyzer. Analyses, sequence assembling, and editing were done by the CLC sequence viewer (CLCbio). The nucleotide sequence of the F protein gene determined in this study was compared to the NDV sequence

 

 

Iran J Vet Med., Vol 14, No 2 (Spring 2020)                                                                                        137

 

 

data available in the National Center for Bio- technology Information database, and the phylogenetic relationship was established. Sequences were aligned by CLUSTAL W. Distance-based neighbor-joining trees were constructed and designed with the use of the Tamura-Nei model available in the program MEGA5, version 5 (Hosseini et al., 2014; Tamura et al., 2011). The phylogenetic tree was assessed by 1000 bootstrap replicates. Bootstrap support of C70% is shown near the nodes in the phylogenetic trees. The dif- ference in nucleotide sequence and percent- age similarity was estimated with the use of the CLC Main Workbench (CLCbio) (Hos- seini et al., 2014).

Results

ND viruses were detected in 26 of 60 (43%) samples and 12 of 20 (60 %) flocks. There was no significant correlation between age and the presence of NDV (P>0.05). All the positive flocks and birds had common respiratory signs and lesions of ND such as moderate to severe mucopurulent  exudate on the trachea, gasping, coughing, drooping wings, petechiae in the proventriculus, green and white watery diarrhea. In positive flocks, also, the other respiratory pathogens such as infectious bronchitis, avian influenza, and pneumoviruses were detected too (Data is not given).

The sequencing of the F gene revealed that 7 isolates (58.33 %) belonged to the lento- genic and 5 isolates (41.66 %) belonged to the velogenic group due to the motif cleav- age site of 112-RRQKRF-117 and also due to the presentation of the phenylalanine (F) at region 117. All 5 velogenic  isolates  in this study were classified into genotype II, subgenotype VIId.


 

Based on the phylogenetic analysis, this study revealed that the IR/H1248, 1/15, as vaccinal strain, bears a high similarity to the B1 and LaSota with  the rate of 100 % and  a considerable homogeneity to  the  strains of Chicken/Iran/SMV-3/2011(KU201410), IR-HGT2012.1   (JX131357.1),   and  Chick-

en/Iran/SMV-8/2013(KU201415) with the rate of 83.7 %. In the other hand, some velo- genic strains, such as the IR/H1248,10.15 possesses the closeness of 83.7 %  to  B1 and Lasota strains and a very high homo- geneity, with the rate of 100%, to chicken/ Iran/SMV-3/2011(KU201410),     IR-HGT

2012.1 (JX131357.1), chicken/Iran/SMV- 8/2013(KU201415) strains that were previ- ously identified in Iran (Table 1 and Figure 1).

 

       

 

 

 


               

   
                                                                                           
     

1

     
     

UT-PCR_2017(MG871466)

     
     

 

     
     

2

     
     

IR-HGT2012.1_(JX131357.1)

     
     

0.038

     
     

 

     

3

     
     

NDV/Serbia/749/2007

     
     

 

     

0.025 0.013

     
   

 

   
   

Table 1. Nucleotide similarity in the part of the F gene among investigated virusesin this study, some vaccinal, standard and the strains that are separated in Iran

 

  

 

 

 

 

 

genotype_VII(d)(GU227738.1)

 

4          TW/94Pgenotype_VII(e)(AF083961.1)

0.038

0.050

0.038

 

 

 

 

 

 

 

 

 

 

 

 

5                F0)_genotype_III(M21881.1)

0.063

0.088

0.075

0.063

 

 

 

 

 

 

 

 

 

 

 

6                USAgenotype_II(M24698.1)

0.100

0.125

0.113

0.100

0.038

 

 

 

 

 

 

 

 

 

 

7            JL01_F_genotype_I(EF464163.1)

0.138

0.163

0.150

0.138

0.075

0.088

 

 

 

 

 

 

 

 

 

8     MZ-46/95_genotype_VII(b)(AF136778.1)

0.038

0.050

0.038

0.025

0.038

0.075

0.113

 

 

 

 

 

 

 

 

9       Sh-2/98_genotype_VI(g)_(AF458017.1)

0.075

0.088

0.075

0.063

0.050

0.088

0.100

0.038

 

 

 

 

 

 

 

10       XJ-3/97_genotype_VI(f)(AF458019.1)

0.075

0.088

0.075

0.063

0.050

0.088

0.125

0.038

0.050

 

 

 

 

 

 

11         NY_70181/70_genotype_V(AF001105.1)

0.075

0.100

0.088

0.075

0.038

0.075

0.113

0.050

0.063

0.038

 

 

 

 

 

12       chicken/Iran/SMV-8/2013(KU201415)

0.038

0.000

0.013

0.050

0.088

0.125

0.163

0.050

0.088

0.088

0.100

 

 

 

 

13                     LaSota(AF077761.1)

0.138

0.163

0.150

0.138

0.075

0.038

0.050

0.113

0.125

0.125

0.113

0.163

 

 

 

14                        B1(AF309418.1)

0.138

0.163

0.150

0.138

0.075

0.038

0.050

0.113

0.125

0.125

0.113

0.163

0.000

 

 

15              ndv60/Avinew_(KM056356.1)

0.138

 

0.163

 

0.150

 

0.138

 

0.075

 

0.088

 

0.000

 

0.113

 

0.100

 

0.125

 

0.113

 

0.163

 

0.050

 

0.050

 

16       chicken/Iran/SMV-3/2011(KU201410)

0.038

0.000

0.013

0.050

0.088

0.125

0.163

0.050

0.088

0.088

0.100

0.000

0.163

0.163

0.163

17                          IR/H1248.1/15

0.138

0.163

0.150

0.138

0.075

0.038

0.050

0.113

0.125

0.125

0.113

0.163

0.000

0.000

0.050 0.163

18                         IR/H1248.10/15

0.038

0.000

0.013

0.050

0.088

0.125

0.163

0.050

0.088

0.088

0.100

0.000

0.163

0.163

0.163 0.000 0.163

 

 

 

                       

Figure 1. Phylogenetic analysis of the fusion gene for Iran isolates in comparison to sequences from viruses representative of different Newcastle disease virus (NDV) genotypes. The phylogenetic tree was generated by the neighboring-joining model with MEGA (version 5.1 beta). Numbers below branches indicate bootstrap values from 1000 replicates. Horizontal distances are proportional to the minimum number of nucleic-acid differences required to join nodes. The vertical lines are for spacing branches and labels. The analysis was based on the complete open reading frames of all gene segments. The viruses characterized in this report are indicated by black circles. The sequences were obtained from GenBank.

 

 

Discussion

Newcastle disease virus is the causative agent of a serious avian disease that can re- sult in significant economic losses to both the poultry industry and backyard chickens (Saadat et al., 2014).

In the past few decades, implementation


of extensive vaccination programs in com- mercial poultry farms, and to  some  extent in small rural poultry farms has reduced the number of epizootics outbreaks of Newcas- tle disease, however, failure of vaccination still occurs frequently in the poultry industry (Saadat et al., 2014; Samadi et al., 2014).

 

 

 

Newcastle disease  virus  vaccines  like  the other vaccines do not prevent vaccinat- ed animals from becoming infected with a virulent ND virus and subsequently, viral shedding can occur (Kapczynski and King, 2005; Miller et al., 2013). Despite the appli- cation of billions of doses of live, inactivat- ed, and recombinant NDV vaccines world- wide, VNDV continues to be endemic. Due to Miller’s study, superior protection can be provided when vaccines are matched to field isolates (Miller et al., 2013).

The virulence of NDV is known to be as- sociated with differences in the amino acid sequence surrounding the post-translation cleavage site of the F0 protein, with differ- ences in the cleavage sites being directly re- lated to the virulence of the strain. Most vir- ulent viruses have the amino acid sequence 112 R/KR-Q-K/R-R 116 at the C-terminus of the F2 protein and F (Phenylalanine) at resi- due 117, the N-terminus of the F1 protein. In contrast, low virulent viruses have sequences in the same region of 112 G/E-K/R-Q-G/E-R 116 and L (Lysine) at residue 117 (Collins et al., 1998; Dey et al., 2014; Hosseini et al., 2014; Panda et al., 2004).

Full sequencing is the analysis of the en- tire genomic DNA that provides the most comprehensive characterization of the ge- nome. By full fusion gene sequences,  Se- lim reported that all isolates of their study were related to genotype VIId subtype (Se- lim et al., 2018). Saboury implemented the complete coding sequence of fusion (F) and hemagglutinin-neuraminidase (HN) genes to identify VIIl sub-genotype of Newcastle dis- ease virus in Iran (Sabouri et al., 2018).

Partial sequencing has been used in most studies for its advantages which included the low cost of experimental price in comparison to the full sequencing and also it can simply


present interspecies nucleotide similarity.

In this study, the partial sequencing of the cleavage site of the F gene has been conduct- ed. This is because the amino acids of the F gene cleavage site are the “major determi- nant” to confirm the pathogenicity and con- sequently the virulence of the NDV(Miller PJ, 2013). Mehrabanpour showed that iso- lates from Iran belong to class II, genotype III viruses (Mehrabanpour et al., 2014). Hos- seini has detected 112RRQKRF117 in nine field isolates and classified them into the genotype VII, subgenotype VIId  (Hosseini et al., 2014). Kianizadeh’s study showed the virulent isolates with two pairs of arginine and phenylalanine at the N-terminus of the fusion (F) protein cleavage site, similar to other velogenic isolates of NDV character- ized earlier in Russia in 1995 (Kianizadeh et al., 2002). Boroomand et al. (2016) detected 112RRQKRF117 at the C-terminus of the F2 protein and phenylalanine at the N-terminus of the F1 protein residue 117 in three isolates and demonstrated that all isolates belong to the genotype VIId of class II NDV strains (Boroomand et al., 2016). Abdoshah report- ed that Iranian NDV isolates have RRQRRF at the cleavage site of the F Protein and be- longed to the VIIb subgenotype (Abdoshah, 2012). Ebrahimi demonstrated that genotype VII of NDV was still predominant in the do- mestic poultry of Asia. The existence of the VIId subgenotype in far-east countries, the subgenotype VIIb is circulated in Iran and Indian subcontinent countries (Ebrahimi et al., 2012). In the study of Nath, nucleotide sequence analysis of fusion (F) and hemag- glutinin protein genes revealed a close sim- ilarity with genotype XIII strains of NDV. The amino acid sequence of F protein con- firmed the virulent cleavage site (112) R-R- Q-K-R-F (117) (Nath et al., 2016). Accord-

 

 

 

ing to Ababneh’s study, NDV isolates had the motif 112RRQKRF117 and a mean death time (MDT) of 46 h, indicating the velogen- ic nature of these NDV isolates (Ababneh et al., 2012). Munir reported that based on the ICPI, MDT and cleavage motifs RRQKRF in the fusion protein, all NDV isolates in out- breaks of the study were classified as viru- lent (Munir et al., 2012).

According to the results of our study and based on the clinical and postmortem signs, morbidity and mortality rates in our inves- tigated flocks, NDV isolated from Qazvin’s broiler flocks during 2014- 2015 were velo- genic and lentogenic pathotypes, which the velogenic isolates were classified as gen- otype VIId. Our findings are in agreement with the previous studies in Iran about the prevalence of genotype VIId  (Boroomand  et al., 2016; Ebrahimi et al., 2012; Hosseini et al., 2014). As the 7 isolates belonged to lentogenic pathotype and the history of these flocks showed moderate to severe respira- tory signs, it seems that even the lentogen-  ic viruses and live ND vaccines, such as B1 and LaSota, play a significant role in the ex- pression of the clinical signs and respiratory reactions in chickens. These symptoms were stronger when these live vaccine viruses were administrated in flocks suffered from immunosuppressive agents or other respi- ratory pathogens such as Ornithobacterium rhinotracheale (ORT), Escherichia coli (E. coli), infectious bronchitis virus (IBV), avi- an influenza (AI), Mycoplasma gallisepti- cum (MG), and Mycoplasma synoviae (MS) (Glisson, 2013).

Despite the widespread usage of B1 and LaSota, mostly in conjunction with strict biosecurity, failure in vaccination and ND outbreaks has been regularly reported. One possible reason might be incompatible vac-

 

cines and field viruses, as B1 and LaSota be- long to genotype II and now the field isolates belong to genotype VII  that  are  dominant in Iran with a  rising  percentage  (Hosseini et al., 2014). In the work of Dhaygude, it was concluded that despite the usage of vac- cine strains Lasota, B1 and F strains, viru- lent NDV strains are still isolated in India (Dhaygude et al., 2017). Recent studies re- vealed that these routine vaccines ( B1 and LaSota ) could not block the replication and shedding of most of the currently circulating virulent NDV isolates, so genotype-matched vaccines are needed to overcome these chal- lenges (Yusoff and Bello, 2018).

In conclusion, our study indicates that ND viruses were detected in a high percentage in a respiratory complex of broiler and even the lentogenic isolated and vaccinal strains, may exacerbate the respiratory problem.

Acknowledgments

We are particularly grateful for the ex- cellent technical support of Dr. Mohammad Moazzen and the PCR Veterinary Diagnostic Laboratory experts for their technical sup- port. Mention of trade names or commercial products in this article is solely for the pur- pose of providing specific information and does not imply recommendation or endorse- ment by our team.

Conflict of Interest

The authors declared that there is no con- flict of interest.

Ababneh, M.M.K., Dalab, A.E., Alsaad, S.R., Al-
Zghoul, M.B., Al-Natour, M.Q., 2012. Mo- lecular characterization of a recent Newcastle disease virus outbreak in Jordan. Res Vet Sci 93, 1512-1514 http://dx.doi.org/1510.1016/j. rvsc.2012.1503.1004 PMID:22480768.
 
 
 
Abdoshah, M., 2012. Study on pathogenecity and molecular charectrization of Newcastle dis- ease viruses isolates from Iranian commercial farms.Ph.D. Dissertation. University of Teh- ran,Tehran,Iran.
Aldous, E.W., Alexander, D.J., 2001. Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 30, 117-128 http://dx.doi.org/19184810.19181080/
Bello, M.B., Yusoff, K.M., 2018. Genotype diversi- ty of Newcastle dsease virus in Nigeria: Disease control challenges and future outlook. Adv Vi- rol 2018, 17 http://doi:10.1155/2018/6097291
PMID: 6097291.
Boroomand, Z., Jafari, R.A., Mayahi, M., 2016. Molecular characterization and phylogenetic study of the fusion genes of Newcastle dis- ease virus from the recent outbreaks in Ahvaz, Iran. Virusdisease 27, 102-105 http://dx.doi. org/110.1007/s13337-13015-10299-z PMID: 26925451.
Brown, V.R., Bevins, S.N., 2017. A review of vir- ulent Newcastle disease viruses in the United States and the role of wild birds in viral per- sistence and spread. Vet Res 48, 68-68 http://dx-
Choi, K.S., Kye, S.J., Kim, J.Y., To, T.L., Nguyen,
D.T.,  Lee, Y.J.,  Choi, J.G., Kang, H.M.,  Kim,
K.I., Song, B.M., Lee, H.S., 2014. Molecular epidemiology of Newcastle  disease  viruses  in Vietnam. Trop Anim Health Prod 46, 271- 277 http://dx.doi.org/210.1007/s11250-11013-
Collins, M.S., Franklin, S., Strong, I., Meulemans, G., Alexander, D.J., 1998. Antigenic and phy- logenetic studies on a variant Newcastle dis- ease virus using anti-fusion protein monoclonal antibodies and partial sequencing of the fusion protein gene. Avian Pathol 27, 90-96 http://dx. doi.org/18483910.18481080/03079459808419 279. PMID: 18483969
Damena, D., Fusaro, A., Sombo, M., Belaineh, R., Heidari, A., Kebede, A., Kidane, M., Cha- ka, H., 2016. Characterization of Newcastle disease virus isolates obtained from outbreak cases in commercial chickens and wild pigeons
in Ethiopia. SpringerPlus 5, 476-476 http://dx-
Dey, S., Chellappa, M.M., Gaikwad, S., Kataria, J.M., Vakharia, V.N., 2014. Genotype charac- terization of commonly used Newcastle disease virus vaccine strains of India. PLoS One 9, e98869 http://dx.doi.org/98810.91371/journal. pone.0098869 PMID:24897503
Dhaygude, V.S., Sawale, G.K., Chawak, M.M., Bulbule, N.R., Moregaonkar, S.D., Gavhane, D.S., 2017. Molecular characterization of velogenic viscerotropic Ranikhet (Newcastle) disease virus from different outbreaks in desi chickens. Vet World 10, 319-323 http://dx.doi. org/310.14202/vetworld.12017.14319-14323 PMCID:5387659.
Ebadzadeh, H.R., Ahmadi, K., Mohammadnia Afruzi, S., Taghani, R.A., Moradi Eslami, A., Yari, S.M.A., , 2015. Agricultural statistics. Center for Information and Communication Technology, Tehran, Iran. 99–160.
Ebrahimi, M.M., Shahsavandi, S., Moazenijula, G., Shamsara, M., 2012. Phylogeny and evo- lution of Newcastle disease virus genotypes isolated in Asia during 2008-2011. Virus Genes 45, 63-68 http://dx.doi.org/10.1007/s11262-
Glickman, R.L., Syddall, R.J., Iorio, R.M., Shee- han, J.P., Bratt, M.A., 1988. Quantitative basic residue requirements in the cleavage-activation site of the fusion glycoprotein as a determinant of virulence for Newcastle disease virus. J Vi- rol 62, 354-356 PMC250538.
Glisson, J.R., 2013. Diseases of Poultry, 13th Edi- tion , Emerging Diseases and Diseases of Com- plex or Unknown Etiology ,Multicausal Respi- ratory Diseases, Swayn DE (ed), Diseases of poultry, 13th ed Wiley-Blackwell Publishing, Hoboken, NJ, USA., Chapter 33 , p.1320-1322
Gogoi, P., Ganar, K., Kumar, S., 2017. Avian Paramyxovirus: A Brief Review. Transbound Emerg Dis 64, 53-67 http://dx.doi.org/10.1111/
Hopkins, S., Yoder Jr, H., 1982. Influence of infec- tious bronchitis strains and vaccines on the in- cidence of Mycoplasma synoviae airsacculitis.
 
 
 
Avian Dis, 741-752 PMID:6297445
Hosseini, H., Langeroudi, A.G.,  Torabi,  R., 2014. Molecular characterization and phy- logenetic study of Newcastle disease  virus-  es isolated in Iran, 2010–2012. Avian Dis 58, 373-376 http://dx.doi.org/310.1637/10743- 120713-Reg.120711 PMID:25518430.
Kant, A., Koch, G., Van Roozelaar, D.J., Balk, F., Huurne, A.T., 1997. Differentiation of virulent and non-virulent strains of Newcastle disease virus within 24 hours by polymerase chain re- action. Avian Pathol 26, 837-849 http://dx.doi. org/18483910.18481080/03079459708419257
. PMID:18483949
Kapczynski, D.R., King, D.J., 2005.  Protection of chickens against overt clinical disease and determination of viral shedding following vac- cination with commercially available Newcas- tle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak. Vaccine 23, 3424-3433 http://dx.doi.org/3410.1016/j.vac- cine.2005.3401.3140 PMID:15837366.
Kiani, M.H., Bozorgmehrifard, M.H., Hosseini, H., Charkhkar, S., Ghalyanchi, A., 2016. Mo- lecular characterization and phylogenetic study of newcastle disease viruses isolated in Iran, 2014–2015. Iran J Virol 10, 53-57 http://dx.doi. org/10.21859/isv.21810.21852.21853.21853.
Kianizadeh, M., Aini, I., Omar, A.R., Yusoff, K., Sahrabadi, M., Kargar, R., 2002.  Sequence and phylogenetic analysis of the fusion pro- tein cleavage site of Newcastle disease virus field isolates from Iran. Acta Virol 46, 247-251 PMID: 12693862
Lee,  H.-J.,  Kim,  J.-Y.,   Lee,  Y.-J.,   Lee,  E.-K.,
Song,  B.-M.,  Lee,  H.-S.,  Choi,  K.-S., 2017.
a novel avian paramyxovirus (Putative Sero- type 15) isolated from wild birds. Front Mi- crobiol 8, 786-786 http://dx.doi.org/710.3389/ fmicb.2017.00786 PMID:28529504.
Liu, Q., Bradel-Tretheway, B., Monreal, A.I., Sa- ludes, J.P., Lu, X., Nicola, A.V., Aguilar, H.C., 2015. Nipah virus attachment glycoprotein stalk C-terminal region links receptor  bind- ing to fusion triggering. J Virol 89, 1838-1850 http://dx.doi.org/1810.1128/JVI.02277-02214 PMID:25428863
Mehrabanpour, M.J., Khoobyar, S., Rahimian, A., Nazari, M.B., Keshtkar, M.R., 2014. Phyloge- netic characterization of the fusion genes of  the Newcastle disease viruses isolated in Fars province poultry farms during 2009-2011. Vet Res Forum 5, 187-191 PMID:25568717
Miller, P.J., Afonso, C.L., El Attrache, J., Dorsey, K.M., Courtney, S.C., Guo, Z., Kapczynski, D.R., 2013. Effects of Newcastle disease virus vaccine antibodies on the shedding and trans- mission of challenge viruses. Dev Comp Immu- nol 41, 505-513 http://dx.doi.org/510.1016/j. dci.2013.1006.1007 PMID:23796788
Miller PJ, K.G., 2013. Newcastle disease, other avian paramyxoviruses, and avian metapneu- movirus infections, p 89–107. In Swayn DE, editor. (ed), Diseases of poultry, 13th ed Wi- ley-Blackwell Publishing, Hoboken, NJ, USA., Chapter 3 , p.96.
Munir, M., Cortey, M., Abbas, M., Qureshi,  Z.U.,
Afzal, F.,  Shabbir, M.Z., Khan, M.T., Ahmed,
S., Ahmad, S., Baule, C., Stahl,  K.,  Zohari, S., Berg, M., 2012. Biological characteriza- tion and phylogenetic analysis of a novel ge- netic group of Newcastle disease virus iso- lated from outbreaks in commercial poultry and from backyard poultry flocks in Pakistan. Infect Genet Evol. 12, 1010-1019 http://dx. doi.org/1010.1016/j.meegid.2012.1002.1015 PMID:22418457.
Nath, B., Barman, N.N., Kumar, S., 2016. Mo- lecular characterization of Newcastle disease virus strains isolated from different outbreaks in Northeast India during 2014-15. Microb Pat- hog 91, 85-91 http://dx.doi.org/10.1016/j.mic- path.2015.1011.1026 PMID:26657722.
OIEManual, 2018. Chapter 3.3.14, Newcastle Dis-
ease. 964-983.
Panda, A., Huang, Z., Elankumaran, S., Rocke- mann, D.D., Samal, S.K., 2004. Role of fusion protein cleavage site in the virulence of New- castle disease virus. Microb Pathog 36, 1-10 PMID:14643634
Saadat, Y., Ghafouri, S.A., Tehrani, F., Langerou- di, A.G., 2014. An active serological  survey of antibodies to newcastle disease and avian influenza (H9N2) viruses in the unvaccinated backyard poultry in Bushehr province,Iran,
 
 
 
2012–2013. Asian Pac J Trop Biomed 4, S213-S216 http://dx.doi.org/210.12980/AP- JTB.12984.12014C11293 PMID:25183083
Samadi, S., Kianizadeh, M., Najafi, M.F., Nasab, S.D., Davatgar, A.M., Royaee, A., Pilvar, P., 2014. Molecular characterization and phylo- genetic study of velogenic Newcastle disease virus isolates in Iran. Virus Genes 48,  290- 295 http://dx.doi.org/210.1007/s11262-11013- 11015-y PMID:24287924.
Samson, A.C.R., 1988. Virus Structure, In: Newcastle Disease. Springer, Boston, MA,USA, pp. 23-44 http://dx.doi.org/10.1007/1978-1001-4613-1759- 1003_1003.
Suarez., D.L., 2013. Newcastle disease, other avi- an paramyxoviruses, and avian metapneumovi- rus infections, . In, Diseases of poultry, Swayn DE, (ed) 13th ed, Wiley-Blackwell Publishing, Hoboken, NJ, USA., 89.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molec- ular evolutionary genetics analysis using max- imum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739 http://dx.doi.org/2710.1093/ molbev/msr2121 PMID:21546353.
Weinack, O.M., Snoeyenbos, G., Smyser, C., Soer- jadi-Liem, A., 1984. Influence of Mycoplasma gallisepticum, infectious bronchitis, and cyclo- phosphamide on chickens protected by native intestinal microflora against Salmonella typh- imurium or Escherichia coli. Avian Dis, 416- 425 PMID: 6331365
Xiao, S., Paldurai, A., Nayak, B., Samuel, A.,
Bharoto, E.E., Prajitno, T.Y., Collins, P.L., Sa- mal, S.K., 2012. Complete genome sequences of Newcastle disease virus strains circulating in chicken populations of Indonesia.  J Virol 86, 5969-5970 http://dx.doi.org/5910.1128/ JVI.00546-00512.
Yusoff, K., Bello, M.B., 2018. Diagnostic and Vaccination Approaches for Newcastle Dis- ease Virus in Poultry: The Current and Emerg- ing Perspectives. Biomed Res Int 2018, http:// dx.doi.org/10.1155/2018/7278459 Article ID 7278459.
Zhao, N., Grund, C., Beer, M., Harder, T.C., 2018.
 
Engineered recombinant protein products of the avian paramyxovirus type-1 nucleocapsid and phosphoprotein genes for serological diag- nosis. Virol J 15, 8 http://dx.doi.org/10.1186/ s12985-12018-10924-12988 PMID:29325564.