Mechanical behavior measurement of the sheep small intestine using experimental tests

Document Type : Pathology


Biological Fluid Dynamics Laboratory, Biomechanics Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran


Background: There is no consistent data on the mechanical properties of sheep intestine. OBJECTIVES: We performed a series of biaxial strain measurement experiments and extracted the constitutive model to describe the mechanical characteristics of the sheep intestinal tissue. METHODS: Eleven specimens were obtained freshly from sacrificed  sheep and the planar biaxial tests were performed on the tissue specimens by applying simultaneous loads along the circumfer-ential and longitudinal directions. Then the measured data were fitted into the anisotropic four-parameter Fung-type model and also to the modified Mooney-Rivlin model. RESULTS: The specimens showed some degree of anisotropy; the stiffer direction is not gener-ally predictable. Some of the specimens were stiffer in the circumferential direction, and the others in the longitudinal direction. However, the average results state the circumferential di-rection as the stiffer orientation. CONCLUSIONS: It can be concluded that sheep intestine be-haves normally as a nonlinear anisotropic tissue which is well-characterized by the modified Mooney-Rivlin model.


Article Title [فارسی]

اندازه گیری رفتار مکانیکی روده کوچک گوسفند با استفاده از آزمون های تجربی

Authors [فارسی]

  • آیسا رسولی
  • ناصر فتورائی
گروه بیومکانیک، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران
Abstract [فارسی]

زمینه مطالعه:  اطلاعات جامعی در مورد خواص مکانیکی روده گوسفند وجود ندارد. هدف: برای این منظور تعدادی آزمون‌های کشش دومحوری انجام شد و مدل بنیادی برای توصیف خواص مکانیکی بافت روده گوسفند استخراج شد. روش کار: یازده نمونه تازه گوسفندی تهیه شد و آزمون‌های مسطح دومحوری بر نمونه‌ها با اعمال همزمان نیرو در دو جهت طولی و پیرامونی انجام شد. سپس داده‌های اندازه‌گیری شده با مدل ناهمسانگرد چهار پارامتر فانگ و مدل مونی-ریولین بهینه شده برازش شدند. نتایج: داده‌ها درجه‌ای از ناهمسانگردی را نشان دادند. جهت سختی بافت قابل پیش بینی نبود. تعدادی از نمونه‌ها در جهت پیرامونی سخت تر بودند و بعضی‌ها در جهت طولی. میانگین نتایج نشان داد که جهت پیرامونی سخت تر می باشد. نتیجه گیری نهایی: می‌توان نتیجه گرفت که روده گوسفند به عنوان بافت ناهمسانگرد غیر خطی رفتار می‌کند که با مدل مونی-ریولین بهتر برازش می شود.

Keywords [فارسی]

  • مدل بنیادی ناهمسانگرد
  • مدل فانگ
  • بافت غیر خطی
  • مدل مونی-ریولین بهینه شده
  • تابع انرژی کرنشی
Bathe,  K.J. (1996) Finite Element Procedures, Englewood Cliffs. NJ: Prentice-Hall.
Bathe, K.J. (2007) Theory and Modeling Guide, Watertown, MA: ADINA and ADINA-F, ADINA R&D, Inc, Vol. I and II. 
Bellini, C., Glass, P., Sitti, M., Di Martino, E.S. (2011) Biaxial mechanical modeling of the small intestine. J Mech Behav Biomed Mater. p.1727-1740.
Chong, C., Hung, H., Steinhart, A., Trexler, J.( 2005) Design of a Biaxial Test Device for Compliant Tissue. Worcester Polytechnic Institute. 4: 3-44.
Egorov, V., Schastlivtsev, I., Prut, E., Baranov, A., Turusov,  R.(2002) Mechanical properties of the human gastrointesti-nal tract. J Biomech. 35: 1417-1425.
Frøkjaer, J.B., Andersen, S.D., Drewes, A.M., Gregersen, H.(2006) Ultrasound-determined geometric and biomechanical properties of the human duodenum. Dig Dis Sci. 51: 1662-1669.
Fung, Y.C., Fronek, K., Patitucci, P. (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol. 237: 620-631.
Fung, Y.C. (1991) What are the residual stresses doing in our blood vessels?. Ann Biomed Eng. 19: 237-249.
Liao, D., Zhao, J., Gregersen, H. (2010) 3D mechanical properties of the partially obstructed guinea pig small intestine. J Biomech. 43: 2079-2086.
Munday, J.S, Brennan, M.M, Jaber, A.M, kiupel, M. (2006) Ovine intestinal adenocarcinomas: histologic and phenotypic comparison with human colon cancer. J Comp Med (Memphis). 56: 136-41.
Holzapfel, G.A., Eberlein, R., Wriggers, P., Weizsacker, H. (1996) Large strain analysis of soft biological membranes: Formulation and finite element analysis. Comput Method Appl M. 132: 45-61.
Holzapfel, G.A., Gasser, T.C., Ogden, R.W. (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity. 61: 1-48.
Holzapfel, G.A., Gasser, T.C., Ogden, R.W. (2004) Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J Biomech ENG-T Asme. 126: 264-275.
Holzapfel, G.A. (2005) Similarities between soft biological tissues and rubber like materials. In: Constitutive Models for Rubber IV, A.A. Balkema Publishers. P.-E., Keri, L. (eds.). Balkema, Leiden. The Netherlands. p. 607-617.
Holzapfel, G.A., Sommer, G., Regitnig, P. (2004) Anisotropic mechanical properties of tissue components in human ath-erosclerotic plaques. J Biomech ENG-T Asme. 126: 657-665.
Humphrey, J.D., Strumpf, R.K., Yin, F.C.P. (1990) Determination of a constitutive relation for passive myocardium: A New Functional Form. J Biomech ENG-T Asme. 112: 333-339.
Humphrey, J.D., Strumpf, R.K., Yin, F.C.P. (1990) Determination of a constitutive relation for passive myocardium: II. Parameter Estimation. J Biomech ENG-T Asme. 112: 340-346. 
[19]        Slatkin.(1999) Modeling and experiments for a class of robotic endoscopes. Ph.D. Thesis California Institute of Technology.
Sun, W., Sacks, M.S., Scott, M.J. (2003) Numerical simulations of the planar biaxial mechanical behavior of biological materials. Bioengineering Conference, Florida. p. 1-2.
Terry, B.S., Lyle, A.B., Schoen, J.A., Rentschler, M.E. (2010) Preliminary mechanical characterization of the small bowel  for in vivo mobility. ASME International Mechanical Engineering Congress and Exposition, Vancouver, British Columbia, Canada.
Sokolis, D.P. (2012) Multiaxial mechanical behaviour of the passive ureteral wall: experimental study and mathematical characterisation. Computer methods in biomechanics and biomedical engineering. 15: 1145-1156.