Preparation and evaluation of a thermosensitive liposomal hydrogel for sustained delivery of danofloxacin using mesoporous silica nanoparticles

Document Type : Pharmacology

Authors

1 PhD student, Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.

2 Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

3 Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

Abstract

Background: Sustained release delivery system can reduce the dosage frequency and maintain the therapeutic level of drugs for a longer time. Biodegradable, biocompatible and thermosensitive chitosan-beta-glycerophosphate (C-GP) solutions can solidify at body temperature and maintain their physical integrity for a longer duration. OBJECTIVES: To develop a novel delivery system based on the integration of liposomes in hydrogel using mesoporous silica nanoparticles (MSNs) for sustained release of danofloxacin in farm animals. METHODS: The MSNs were prepared using N-cetyltrimethylammonium bromide and tetraethylortho silica. The liposomes were prepared by thin film hydration method. C-GP solution containing danofloxacin-loaded MSN liposomes underwent different in-vitro tests, including evaluation of the entrapment efficiency, gelation time, morphology, drug release pattern as well as antimicrobial activities against S. aureus and E. coli. RESULTS: The mean pore size of MSNs was 2.8 nm and the mean MSN entrapment efficiency was 45%. Kinetics of danofloxacin release from liposomal hydrogel followed the Higuchi’s model. This formulation was capable of sustaining the danofloxacin release for more than 96 h. The FTIR studies showed that there were no interactions between danofloxacin and hydrogel  excipients. Scanning electron microscopy (SEM) showed that the formed gel had a continuous texture, while the swelled gel in the phosphate buffer had a porous structure. Microbiological tests revealed a high antibacterial activity for lipomosal hydrogel of danofloxacin-loaded MSN comparable with danofloxacin solution. CONCLUSIONS: The liposomal hydrogel solidified at body temperature, effectively sustained the release of danofloxacin and showed in vitro antibacterial effects.

Keywords


Article Title [Persian]

تهیه و ارزیابی یک هیدروژل لیپوزومی حساس به حرارت برای دارورسانی آهسته رهش دانوفلوکساسین با استفاده از نانوذرات سیلیکای مزوپوروس

Authors [Persian]

  • کتایون کیانی 1
  • علی رسولی 2
  • یلدا حسین زاده اردکانی 3
  • حمید اکبری جور 3
  • سکینه خانمانی فلاحتی پور 2
  • پگاه خسرویان 3
  • تقی زهرایی صالحی 4
1 بخش فارماکولوژی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران
2 بخش فارماکولوژی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران
3 گروه فارماسوتیکس، دانشکده داروسازی دانشگاه علوم پزشکی تهران، تهران، ایران
4 گروه میکروبیولوژی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران
Abstract [Persian]

 
زمینه مطالعه:  سامانه‌های دارورسانی آهسته رهش می‌توانند دفعات تجویز را کاهش داده و عیارهای درمانی دارو را برای مدت‌های طولانی‌تر حفظ نمایند. محلول‌های زیست تخریب پذیر، زیست سازگار و حساس به حرارت  کیتوزان- بتا گلیسروفسفات در دمای بدن ژله‌ای شده و برای مدت طولانی قادر به حفظ یکپارچگی خود می باشند. هدف: ساخت یک سامانه دارورسانی جدید آهسته رهش دانوفلوکساسین بر پایه ترکیب لیپوزوم و هیدروژل با استفاده از نانوذرات سیلیکا برای مصرف در حیوانات مزرعه می‌باشد. روشکار: نانوذرات سیلیکای مزوپوروس با استفاده از ستیل تری متیل آمونیوم و تترا اتیل اورتوسیلیکا و لیپوزوم‌ها به روش هیدراسیون لایه نازک تهیه شدند. محلول‌های کیتوزان-بتا گلیسرو فسفات حاوی لیپوزوم های دانوفلوکساسین بار شده در نانوذرات سیلیکا تحت ارزیابی‌های مختلف از جمله الگوی رهایش دارو، زمان ژله‌ای شدن، میزان بارگیری در نانوذرات، ریخت شناسی و آزمایشات فعالیت ضدمیکروبی علیه استافیلوکوک اورئوس و اشریشیا کلای قرار گرفتند. نتایج: میانگین اندازه حفرات نانوذرات nm‌8/2 و میانگین کارآیی بارگیری دارو در نانو ذرات 45% بود. کینتیک رهایش دارو از مدل هیگوشی پیروی کرده و قادر به رهایش دانوفلوکساسین به مدت بیش از 96 ساعت بود. براساس مطالعات انجام شده هیچ برهمکنشی بین دانوفلوکساسین و سایر اجزا ژل وجود نداشت. میکروسکوپ الکترونی نگاره ساختار یکنواخت و غیرمتخلخلی را برای ژل نشان داد، در حالی که ژل متورم شده در بافر فسفات دارای ساختار متخلخل بود. آزمایشات میکروبی فعالیت بالای ضدباکتریایی هیدروژل لیپوزومی دانوفلوکساسین و قابل مقایسه با محلول دانفلوکساسین را نشان داد. نتیجهگیرینهایی: هیدروژل لیپوزومی دانوفلوکساسین در دمای بدن جامد شد و بخوبی قادر به آهسته رهش کردن دارو و نشان دادن اثرات ضدباکتریایی در محیط آزمایشگاهی بود. 

Keywords [Persian]

  • دانوفلوکساسین
  • دارورسانی
  • لیپوزوم
  • نانوذرات سیلیکای مزوپوروس
  • حساس به حرارت
 
Beck-Broichsitter, M., Gauss, J., Packhaeuser, C.B., Lahnstein, K., Schmehl Seeger, W., Kissel, T., Gessler, T. (2009) Pulmonary drug delivery with aerosolizable nanoparticles in an ex-vivo lung model. Int J Pharm. 367: 169-178.##
Chang, Y., Xiao, L., Tang, Q. (2009) Preparation and characterization of a novel thermosensitive hydrogel based on chitosan and gelatin blends. J Appl Polymer Sci. 113: 400-407.##
Charnay, C., Begu, S., Tourne-Peteilh, C., Nicole, L., Lerner, D.A., Devoisselle, J.M. (2004) Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm. 57: 533-540.##
Chenite, A., buschmann, M., Wang, D., Chaput, C., Kandani, N. (2001) Rheological characterization of thermogelline chitosan/glycerol-phosphate solutions. Carbohydr Polym. 46: 39-47.##
Hashemikia, S., Hemmatinejad, N., Ahmadi, E., Montazer, M. (2015) Optimization of tetracycline hydrochloride adsorption on amino modified SBA-15 using response surface methodology. J Colloid Interface Sci. 443: 105-114.##
Jahangirian, H., Haron, M.J., Imail,M.H., Rafiee-Moghadam, R., Afsah-Hejri, L., AbdolahiI, Y., Rezayi, M., Vafaei, N. (2013) Well diffusion method for evaluation of antibacterial activity of copper phenylL fatty hydroxamate synthesized from canola and palm kernel oils. Digest J Nanomater Biostruct. 8: 1263-1270.##
Khaled, M.H. (2010) Ciprofloxacin as ocular liposomal hydrogel. AAPS Pharm Sci Tech. 11: 241-246.##
Khodaverdi, E., Tafaghodi, M., Ganji, F., Abnoos, Kh., Naghizadeh, H. (2012) In vitro insulin release from thermosensitive chitosan hydrogel: AAPS Pharm Sci Tech. 13: 460-466.##
Lai, C.Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S., Lin, V.S.A. (2003) Mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc. 125: 4451-4459.##
Liu, T., Li, L., Teng, X., Huang, X., Liu, H., Chen, D., Ren, J., He, J., Tang, F. (2011) Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. 2011. J biomaterials. 32: 1657-1668.##
Medlicott, N.J., Waldron, N.A., Todd, P.F. (2004) Sustained release veterinary parentral products. Adv Drug Deliv Rev. 56: 1345-65.##
Mohseni, M., Gilani K., Mortazavi, S.A. (2015) Preparation and characterization of rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iran J Pharm Res. 14: 27-34.##
Mulik, R., Kulkarni, V., Murthy, R.S. (2009) Chitosan-based thermosensitive hydrogel containing liposomes for sustained delivery of cytarabine. Drug Dev Ind Pharm. 35: 49-56.##
New, R.R.C., Chance, S.M., Thomas, S.C., Peters, W. (1978) Antileishmanial activity of antimonials entrapped in liposomes. Nature. 272: 55-58. ##
Patois, E., Osorio-da Cruz., Tille, J.C., Walpoth, B., Gurny R., Jordan, O. (2009) Novel thermosensitive chitosan hydrogels: in vivo evaluation. J Biomed Mater Res A. 91: 324-30.##
Prajapati, B.G., Patel, M.M. (2011) Crosslinked chitosan gel for local drug delivery of clotrimazole. E-J Sci Tech.  6: 43.##
Qu, F., Zhu, G., Huang, S., Li, S., Qiu, S. (2006) Effective controlled release of captopril by silylation of mesoporous MCM-41. Chem Phys Chem 7: 400-406.##
Ruel Gariépy, E., Leclair, G., Hildgen, P., Gupta, A., Leroux, J.C. (2002) Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release. 21: 373-83.##
Sharma, A., Sharma, U.S. (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm. 154: 123-140.##
Shashi, K., Satinder, K., Bharat, P.A. (2012) complete review on: Liposomes. Int Res J Pharm. 3: 10-16.##
Singhvi, G., Singh, M. (2011) Reviwe of  in vitro drug release characterization models.Int J Pharm Studies Res. 2: 77-84.##
Thirumaleshwar, S., Kulkarni, P.K., Gowda, D.V. (2012) Liposomal hydrogels: A novel drug delivery system for wound dressing. Curr Drug Therap. 7: 212-218.##
Yang, F.,Sun, N., Liu, Y.M., Zeng, Z.L. (2014) Estimating danofloxacin withdrawal time in broiler chickens based on physiologically based pharmacokinetics modeling. Vet Pharm Ther. 38: 174-182.##
Zentner, G.M., Rathi, R., Shih, C., McRea, J.C., Seo, M-H., Oh, H., Rhee, B.G., Mestecky, J., Moldoveanu, Z., Morgan, M., Weitman, S. (2001) Biodegradable block copolymers for delivery of proteins and waterinsolubledrugs. J Controll Release. 72: 203-215.##
Zhou, H.Y., Zhang, Y.P., Zhang, W.F., Chen, X.G. (2011) Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr Polym. 83: 1643-1651.##