Preparation and in vitro evaluation of a novel chitosan-based hydrogel for injectable delivery of enrofloxacin

Document Type: Pharmacology

Authors

1 Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

2 .Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

3 Associate Prof. Dept Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

4 Dept Pharmacology, Faculty of Vet Med, University of Tehran, Tehran, Iran.

5 Prof. and Head of Dept Microbiology, Faculty of Vet Med, University ofTehran, Tehran, Iran.

Abstract

BACKGROUND: The development of injectable sustained-release products are of great interest to veterinary pharmaceuticals and animal health business. Recently, great attention has been paid to in situ gel-forming chitosan/beta-glycerophosphate (chitosan/β-GP) solutions due to their good biodegradability and thermosensitivity. OBJECTIVES: The general aim of this study was to prepare a novel in situ gel-forming drug delivery system with a sustained release profile for enrofloxacin. METHODS: Chitosan, β-GP and enrofloxacin were used in different concentrations and six formulations of chitosan/β-GP were prepared. The properties of the hydrogels including the pattern of drug release, gelation time, syringeability, morphology, FTIR spectra, and in vitro antimicrobial activity were evaluated. RESULTS: The release rate of enrofloxacin from the hydrogels and syringeability of the final solutions were decreased by increasing in β-GP and chitosan concentrations. All formulations could release the drug up to 120 hours but formulation 1 (chitosan-2%, β-GP-5% and enrofloxacin-1%) gave the best results based on its optimal drug release profile and viscosity. The FTIR studies showed that there were no interactions between enrofloxacin and hydrogel excipients. Scanning electron microscopy showed that the formed gel had a continuous texture, while the swelled gel in phosphate buffer had a porous structure. Microbiological tests revealed high bactericidal activities for this enrofloxacin- loaded hydrogel which were comparable to those of positive control (enrofloxacin suspension) in terms of inhibition zone, MIC and MBC values. CONCLUSION: Because of simple preparation and sustained release profile of the drug, this hydrogel could be a promising delivery system for enrofloxacin in animals.

Keywords


Article Title [Persian]

تهیه و ارزیابی آزمایشگاهی یک هیدروژل جدید قابل تزریق انروفلوکساسین بر پایه کیتوزان

Authors [Persian]

  • سکینه خنامانی فلاحتی پور 1
  • علی رسولی 1
  • یلدا حسین زاده اردکانی 2
  • حمید اکبری جور 3
  • کتایون کیانی 4
  • تقی زهرایی صالحی 5
1 بخش فارماکولوژی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران
2 گروه فارماسوتیکس، دانشکده داروسازی دانشگاه علوم پزشکی تهران، تهران، ایران
3 Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4 بخش فارماکولوژی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران
5 Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
Abstract [Persian]

زمینه مطالعه: توسعه فرآورده های تزریقی آهسته رهش مورد علاقه شدید صنایع دارویی دامپزشکی و دست اندرکاران بهداشت دام است. در سال های اخیر، توجه زیادی به محلول های کیتوزان/ بتا-گلیسروفسفات تشکیل دهنده ژل در محل، بخاطر زیست تجزیه پذیری خوب و حساسیت آنها به دما، جلب شده است. هدف: هدف کلی این مطالعه تهیه یک سامانه دارورسانی جدید تشکیل ژل در محل با پروفایل آهسته رهش برای انروفلوکساسین است. روش کار: با استفاده از غلظت های مختلف کیتوزان، بتاگلیسروفسفات و انروفلوکساسین، 6 فرمولاسیون کیتوزان/ بتا-گلیسروفسفات تهیه شد. خصوصیات هیدروژل ها از جمله الگوی رهایش دارو، زمان ژل شدن، قابلیت کشیده شدن هیدروژل در سرنگ، ریخت شناسی، طیف FTIR و فعالیت ضدمیکروبی آنها در شرایط آزمایشگاهی ارزیابی گردید. نتایج: سرعت رهایش دارو و قابلیت کشیده شدن هیدروژل در سرنگ با افزایش میزان کیتوزان و بتاگلیسروفسفات کاهش یافت. تمامی هیدروژل ها قابلیت رهایش دارو را تا 120 ساعت داشتند، اما بهترین نتایج براساس رهایش بهینه دارو و ویسکوزیته با فرمولاسیون 1 (کیتوزان 2%، بتاگلیسروفسفات 5% و انروفلوکساسین 1%) بدست آمد. مطالعات FTIR هیچ برهمکنشی را بین دارو و اجزاء هیدروژل نشان نداد. میکروسکوپ الکترونی نگاره، ساختار یکنواختی را برای ژل تشکیل شده نشان داد اما هیدروژل متورم شده در بافرفسفات، ساختار متخلخلی داشت. آزمایشات میکروبی، فعالیت باکتری ساید بالایی برای انروفلوکساسین بارگذاری شده در این هیدروژل نشان داد که از نظر میزان منطقه مهار رشد، حداقل غلظت مهاری و حداقل غلظت کشندگی باکتری ها مشابه نمونه های شاهد مثبت (سوسپانسیون انروفلوکساسین) بود. نتیجه گیری: این هیدروژل بخاطر داشتن روش تهیه ساده و پروفایل آهسته رهش دارو، دارای چشم انداز روشنی برای دارورسانی انروفلوکساسین در حیوانات می باشد

Keywords [Persian]

  • بتا-گلیسروفسفات
  • انروفلوکساسین
  • کیتوزان
  • هیدروژل
  • آهسته رهش
Anadon, A., Martinez-Larra aga, M.R., Diaz, M.J., Fernandez-Cruz, M.L., Martinez, M.A., Frejo, M.T., Martínez, M., Iturbe, J., Tafur, M.  (1999) Pharmacokinetic variables and tissue residues of enrofloxacin and ciprofloxacin in healthy pigs. Am J Vet Res. 60: 1377-1382.##

Berrada, M., Serreqi, A., Dabbarh, F., Owusu, A., Gupta, A., Lehnert, S. (2005) A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials. 26: 2115-2120.##

Bhushan, S., Agnihotri, V., Bodhankar, M. (2011) A Novel Thermoreversible Phase Transition System with Flux enhancers for ophthalmic application. Int J Pharm Pharm Sci. 3: 367-370.##

Chen, M.C., Mi, F.L., Liao, Z.X., Sung, H.W. (2011) Chitosan: its applications in drug-eluting devices. Chitosan for Biomaterials I, Springer: 185-230.##

Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M., Hoemann, C., Leroux, J., Atkinson, B., Binette, F., Selmani, A. (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21: 2155-2161.##

Ganji, F., Abdekhodaie, M. (2007) Gelation time and degradation rate of chitosan-based injectable hydrogel. J Sol-Gel Sci Technol. 42: 47-53.##

Gong, L.Y., Hu, K., Yang X.L. (2009) Preparation and release characteristics of enrofloxacin chitosan nanoparticles in vitro. Journal of Shanghai Ocean University. 3: 321-326.##

Higuchi, T. (1963) Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 52: 1145-1149.##

Hixson, A., Crowell, J. (1931) Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 23: 1160-1168.##

Jahangirian, H., Haron, M.J., Shah, M.H., Abdollahi, Y.,  Rezayi, M., Vafaei, N. (2013) Well diffusion method for evaluation of antibacterial activity of coper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Dig J Nanomater Biostruct (DJNB). 8: 1263-1270.##

Jia, Z., Dequan, Z., Fengping, T., Jiang, G., Ying, L., Fuxin, D. (2006) Preparation of thermosensitive chitosan formulations containing 5-fluorouracil/poly-3-hydroxybutyrate microparticles used as injectable drug delivery system. Chin J Chem Eng. 14: 235-241.##

John, H.D., Geoffrey, W., Herbert, C. (1994) Methods for the study of irritation and toxicity of substance applied topically to the skin and mucous membrane. J Pharmacol Exp Ther. 82: 377-390.##

Kempe, S., Metz, H., Bastrop, M., Hvilsom, A., Contri, R.V., Mäder, K. (2008) Characterization of thermosensitive chitosan-based hydrogels by rheology and electron paramagnetic resonance spectroscopy. Eur J Pharm Biopharm. 68: 26-33.##

Khan, S. (2014) In situ gelling drug delivery system: An overview. JIPBS. 1: 88-91.##

Khodaverdi, E., Tafaghodi, M., Ganji, F., Abnoos, K., Naghizadeh, H. (2012). In vitro insulin release from thermosensitive chitosan hydrogel.” AAPS Pharm Sci Tech. 13: 460-466.##

     Kumar, S., Arivuchelvan, A. Jagadeeswaran, A., Subramanian, N., Kumar, S., Mekala, P. (2015) Formulation, optimization and evaluation of enrofloxacin solid lipid nanoparticles for sustained oral delivery. Asian J Pharm Clin Res. 8: 231-236.##

Kushwaha, S.K., Rai, A.K., Singh, S. (2013) Thermosensitive hydrogel for controlled drug delivery of anticancer agents. Int J Pharm Pharm Sci. 5: 547-552.##

Lalitha, M. (2004) Manual on antimicrobial susceptibility testing. Performance standards for antimicrobial testing: 12th Informational Supplement. 56238: 454-456.##

Li, C., Ren, S., Dai, Y.,  Tian, F., Wang, X., Zhou, S, Deng, S., Liu, Q.,  Zhao, J., Chen, X. (2014) Efficacy, pharmacokinetics, and biodistribution of thermosensitive chitosan/β-glycerophosphate hydrogel loaded with docetaxel. AAPS Pharm Sci Tech. 15: 417-424.##

López-Cadenas, C., Sierra-Vega, M., García-Vieitez, J.J., Diez-Liébana, M.J., Sahagún-Prieto, A., Fernández-Martínez, N. (2013) Enrofloxacin: Pharmacokinetics and metabolism in domestic animal species. Curr Drug Metab. 14: 1042-1058.##

Martinez, M., McDermott, P., Walker, R. (2006) Pharmacology of the fluoroquinolones: a perspective for the use in domestic animals.  Vet J. 172: 10-28.##

Matschke, C., Isele, U., van Hoogevest, P., Fahr, A. (2002) Sustained-release injectables formed in situ and their potential use for veterinary products. J Control Release. 85: 1-15.##

Mirzaei, B.E.A., Ramazani, S.A., Shafiee, M., Danaei, M. (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater Polym Biomater. 62: 605-611.##

Modrzejewska, Z., Skwarczyńska, A., Maniukiewicz, W., Douglas, T.E. (2014) Mechanism of formation of thermosensitive chitosan chloride gels. Progress in the Chemistry and Application of Chitin and its Derivatives (19): 125-134.##

Pandian, P., Kannan, K., Manikandan, M., Manavalan, R. (2012) Formulation and evaluation of oseltamivir phosphate capsules. Int J Pharm Pharm Sci. 4: 342-347.##

Pandya, Y., Sisodiya, D., Dashora, K. (2014) Atrigel®, implants and controlled released drug delivery system. Int J Biopharm. 5: 208-213.##

Parida, U.K., Nayak, A.K., Binhani, B.K., Nayak, P. (2011) Synthesis and characterization of chitosan-polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. J Biomater Nanobiotechnol. 2: 414.##

Qiu, X., Yang, Y., Wang, L., Lu, S., Shao, Z., Chen, X. (2011) Synergistic interactions during thermosensitive chitosan-β-glycerophosphate hydrogel formation. RSC Advances. 1: 282-289.##

Ranjha, N.M. Qureshi, U.F. (2014) Preparation and characterization of crosslinked acrylic acid/hydroxy propyl methyl cellulose hydrogels for drug delivery. Int J Pharm Pharm Sci. 6: 400-410.##

Ruel-Gariépy, E., Shive, M., Bichara, A., Berrada, M., Le Garrec, D., Chenite, A., Leroux, J. C. (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm. 57: 53-63.##

Shoaib, M.H., Tazeen, J., Merchant, H.A., Yousuf, R.I. (2006) Evaluation of drug release kinetics from ibuprofen matrix tablets using HPLC. Pak J Pharm Sci. 19: 119-124.##

Song, K., Qiao, M., Liu, T., Jiang, B., Macedo, H.M., Ma, X., Cui, Z. (2010) Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. J Mater Sci: Mater Med. 21: 2835-2842.##

Udomkusonsri, P., Kaewmokul, S., Arthitvong, S., Songserm, T. (2010) Use of enrofloxacin in calcium beads for local infection therapy in animals. Kasetsart J (Natural Science). 44: 1115-1120.##

Vancutsem, P., Babish, J., Schwark, W. (1990)The fluoroquinolone antimicrobials: structure, antimicrobial activity, pharmacokinetics, clinical use in domestic animals and toxicity. The Cornell Veterinarian. 80: 173-186.##

Venkatesh, M.P., Purohit Kamlesh, L., pramod Kumar, T.M. (2013) Development and evaluation of chitosan based thermosensitive in situ gels of pilocarpine. Int J Pharm Pharm Sci. 5: 164-169.##

Wagh, V.D., Deshmukh, K.H., Wagh, K.V. (2012) Formulation and evaluation of in situ gel drug delivery system of Sesbania grandiflora flower extract for the treatment of bacterial conjunctivitis. J Pharm Res. 4: 1880-1884.##

Yilmaz, M.T. (2012) Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turkish J Med Sci. 42: 1423-1429.##

Zhou, H.Y., Zhang, Y.P., Zhang, W.F., Chen, X.G. (2011) Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr Polym. 83: 1643-1651.##