میانجیگری گیرند ههای NMDA و متابوتروپیک نوع 1 گلوتامات ب ر ک ا ه ش اخذ غذای القا شده با دوپامین در جوجه

نوع مقاله : فیزیولوژی

نویسندگان

گروه علوم پایه، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران

چکیده

زمینه مطالعه:  رفتار تغذیه‌ای از  راه مسیرهای پیچیده بواسطه سیگنال‌های مرکزی و اندام‌های محیطی تنظیم می‌شود. مشخص شده است که سیستم دوپامینرژیک و گلوتاماترژیک نقش مهمی در تنظیم مصرف خوراک دارند اما گزارشات کمی در مورد تقابل عمل آنها در پرندگان وجود دارد. هدف: این مطالعه به‌منظور بررسی نقش سیستم گلوتاماترژیک بر کاهش اشتهای ناشی از دوپامین در جوجه‌های گوشتی یک روزه طراحی شد. روش کار: در آزمایش اول جوجه‌ها تزریق داخل بطنی مغزی محلول کنترل، دوپامین (4nmol)، رMK-801 (آنتاگونیست گیرنده NMDA گلوتاماتی، nmol‌15) و تزریق توام دوپامین + MK-801 را دریافت کردند. در آزمایش دوم جوجه‌ها با محلول کنترل، دوپامین (4nmol)،ر CNQX (آنتاگونیست گیرنده AMPA گلوتاماتی، nmol‌390) و استفاده توام دوپامین + AMPA تزریق داخل بطنی مغزی شدند. در آزمایش سوم جوجه‌ها تزریق داخل بطنی مغزی محلول کنترل، دوپامین (4nmol)،رAIDA (آنتاگونیست گیرنده mGLUR1 گلوتاماتی، nmol‌2) و دوپامین + AIDA را دریافت کردند. آزمایش 4 و 5 مشابه آزمایش 3 بود بطوری‌که جوجه‌ها LY341495 (آنتاگونیست گیرنده mGLUR2 گلوتاماتی، nmol‌150) و UBP1112 (آنتاگونیست گیرنده mGLUR3 گلوتاماتی، nmol‌2) را بجای AIDA دریافت کردند. سپس مصرف تجمعی خوراک تا 120 دقیقه پس از تزریق اندازه‌گیری شد. نتایج: با توجه به نتایج بدست آمده تزریق داخل بطنی مغزی دوپامین بطور معنی‌داری موجب کاهش اخذ غذا شد (001/0>p). تزریق توام دوپامین و MK-801 موجب کاهش اثرات ضد اشتهایی دوپامین شد (001/0>p). مصرف خوراک در جوجه‌ها بواسطه تزریق توام دوپامین و AIDA  افزایش یافت (001/0>p). نتیجه‌گیری نهایی: نتایج نشان‌دهنده این بود که کاهش اشتهای ناشی از دوپامین از طریق گیرنده‌های NMDA و mGLUR1 گلوتاماترژیک در جوجه‌های گوشتی میانجی‌گری می‌شود.

کلیدواژه‌ها


 
Antunes, F., Nunes, C., Laranjinha, J., Cadenas, E. (2005) Redox interactions of nitric oxide with dopamine and its derivatives. Toxicol. 208: 207-212.
Baghbanzadeh, A., Babapour, V. (2007) Glutamate ionotropic and metabotropic receptors affect feed intake in broiler cockerels. J Vet Res. 62: 125-129.
Blevins, J.E., Stanley, B.G., Reidelberger, R.D. (2002) DMSO as a vehicle for central injections: tests with feeding elicited by norepinephrine injected into the paraventricular nucleus. Pharmacol Biochem Behav. 71: 277-282.
Boswell, T. (2005) Regulation of energy balance in birds by the neuroendocrine hypothalamus. J Poult Sci. 42: 161-181.
Charles, J.R., Duva, M.A., Ramirez, G.J., Lara, R.L., Yang, C.R., Stanley, B.G. (2014) Activation of lateral hypothalamic mGlu1 and mGlu5 receptors elicits feeding in rats. Neuropharmacol. 79: 59-65.
Da Silva, A.A., Marino-Neto, J., Paschoalini, M.A. (2003) Feeding induced by microinjections of NMDA and AMPA-kainite receptor antagonists into ventral striatal and ventral pallidal areas of the pigeon. Brain Res. 966: 76-83.
Davis, J.L., Masuoka, D.T., Gerbrandt, L.K., Cherkin, A. (1979) Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiol Behav. 22: 693-695.
Denbow, D.M. (1994) Peripheral regulation of food intake in poultry. J Nutr. 124: 1349S-1354S.
Furuse, M. (2002) Central regulation of food intake in the neonatal chick. Anim Sci J. 73: 83-94.
Furuse, M., Ando, R., Bungo, T., Ao, R., ShimoJO, M., Masuda, Y. (1999) Intracerebroventricular injection of orexins does not stimulate food intake in neonatal chicks. Br Poult Sci. 40: 698-700.
Furuse, M., Matsumoto, M., Saito, N., Sugahara, K., Hasegawa, S. (1997) The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol. 339: 211-214.
Hassanpour, S., Zendehdel, M., Babapour, V., Charkhkar, S. (2015) Endocannabinoid and nitric oxide interaction mediates food intake in neonatal chicken. Br Poult Sci. 56: 443-451.
Hettes, S.R., Gonzaga, W.J., Heyming, T.W., Nguyen, J.K., Perez, S., Stanley, B.G. (2010) Stimulation of lateral hypothalamic AMPA receptors may induce feeding in rats. Brain Res. 1346: 112-120.
Irwin, N., Hunter, K., Frizzell, N., Flatt, P.R. (2008) Antidiabetic effects of sub-chronic administration of the cannabinoid receptor (CB1) antagonist, AM251, in obese diabetic (ob/ob) mice. Eur J Pharmacol. 581: 226-233.
Jonaidi, H., Noori, Z. (2012) Neuropeptide Y-induced feeding is dependent on GABAA receptors in neonatal chicks. J Comp Physiol A. 198: 827-832.
Kuo, Dy. (2002) Co-administration of dopamine D1 and D2 agonists additively decreases daily food intake, body weight and hypothalamic neuropeptide Y level in rats. J Biomed Sci. 9: 126-32.
Ladepeche, L., Yang, L., Bouchet, D., Groc, L. (2013) Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses. PLoS ONE. 8: e74512.
Madhavan, A., Argilli, E., Bonci, A., Whistler, J.L. (2013) Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area. J Neurosci. 33: 12329-12336.
McFadden, K.L., Cornier, M.A., Tregellas, J.R. (2014) The role of alpha-7 nicotinic receptors in food intake behaviors. Frontiers In Psychol. 5: 1-7.
McMillen, B.A., Lommatzsch, C.L., Sayonh, M.J., Williams, H.L. (2013) Interactions of a dopamine D1 receptor agonist with glutamate NMDA receptor antagonists on the volitional consumption of ethanol by the mHEP rat. Pharmaceuticals. 6: 469-479.
Mikhailova, M.O. (2003) Comparison of changes in glutamate levels in the nucleus accumbens of the rat brain during food consumption in conditions of blockade of dopamine D1 and D2 receptors. Neurosci Behav Physiol. 33: 431-434.
Olanrewaju, H.A., Thaxton, J.P., Dozier, W.A., Purswell, J., Roush, W.B., Branton, S.L. (2006) A review of lighting programs for broiler production. Int J poult Sci. 5: 301-308.
Qi, W., Ding, D., Salvi, R.J. (2008) Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hear Res. 236: 52-60.
Ricahrd, J.M., Berridge, K.C. (2011) Nucleus Accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D1 alone for appetitive eating but D1 and D2 together for fear. J Neurosci. 31: 12866-12879.
Saito, E.S., Kaiya, H., Tachibana, T., Tomonaga, S., Denbow, D.M., Kangawa, K., Furuse, M. (2005) Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept. 125: 201-208.
Salamone, A., Zappettini, S., Grilli, M., Olivero, G., Agostinho, P., Tomé, A.R., Chen, J., Pittaluga, A., Cunha, R.A., Marchi, M. (2014) Prolonged nicotine exposure down-regulates presynaptic NMDA receptors in dopaminergic terminals of the rat nucleus accumbens. Neuropharmacology. 79: 488-497.
Seyedali Mortezaei, S., Zendehdel, M., Babapour, V., Hasani, K. (2013) The role of glutamatergic and GABAergic systems on serotonin- induced feeding behavior in chicken. Vet Res Commun. 37: 303-310.
Stanley, B.G., Willett, V.L., Doniasm H.W., Dee, M.G., Duva, M.A. (1996) Lateral hypothalamic NMDA receptors and glutamate as physiological mediators of eating and weight control. Am J Physiol. 270: 443-449.
Taati, M., Nayebzadeh, H., Zendehdel, M. (2011) The effects of DLAP5 and glutamate on ghrelin-induced feeding behavior in 3- h food-deprived broiler cockerels. J Physiol Biochem. 67: 217-223.
Terry, P., Katz, J.L. (1992) Differential antagonism of the effects of dopamine D1-receptor agonists on feeding behavior in the rat. Physiopharmacology. 109: 403-409.
Van Tienhoven, A., Juhasz, L.P. (1962) The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. J Comp Neurol. 118: 185-197.
Volkow, N.D., Wang, G.J., Baler, R.D. (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 15: 37-46.
Zendehdel, M., Baghbanzadeh, A., Babapour, V., Cheraghi, J. (2009) The effects of bicuculline and muscimol on glutamate-induced feeding behaviour in broiler cockerels. J Comp Physiol A. 195: 715-720.
Zendehdel, M., Hasani, K., Babapour, V., Seyedali Mortezaei, S., Khoshbakht, Y., Hassanpour, S. (2014a) Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken. Vet Res Commun. 38: 11-19.
Zendehdel, M., Hassanpour, S. (2014) Ghrelin-induced hypophagia is mediated by the β2 adrenergic receptor in chicken. J Physiol Sci. 64: 383-391.
Zendehdel, M., Hassanpour, S. (2014b) Central regulation of food intake in mammals and birds: a review. Neurotransmitter. 1: 1-7.
Zendehdel, M., Taati, M., Jonaidi, H., Amini, E. (2012) The role of central 5-HT (2C) and NMDA receptors on LPS-induced feeding behavior in chickens. J Physiol Sci. 62: 413-419.
Zeni, L.A., Seidler, H.B., De Carvalho, N.A., Freitas, C.G., Marino-Neto, J., Paschoalini, M.A. (2000) Glutamatergic control of food intake in pigeons: effects of central injections of glutamate, NMDA, and AMPA receptor agonists and antagonists. Pharmacol Biochem Behav. 65: 67-74.