بررسی آلودگی های انگلی مدفوعی در خزندگان در اسارت شهر تهران

نوع مقاله : عوامل عفونی - بیماریها

نویسندگان

1 گروه انگل شناسی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران

2 گروه بیماریهای داخلی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران

3 دانش آموخته دوره ی دکتری عمومی دامپزشکی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران.

4 گروه بهداشت و تغذیه دام و طیور، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران

چکیده

ضرورت انجام مطالعه: خزندگان به ویژه انواعی که از حیات وحش صید می‌شوند ممکن است آلوده به انواع انگل‌ها باشند. در شرایط اسارت به دلیل وجود استرس‌هایی مانند تراکم بالا و عدم تغذیه صحیح، حیوان ضعیف شده و علایم بالینی در حیوان ظاهر می‌گردد. هدف مطالعه: با توجه به افزایش تمایل به نگهداری خزندگان به عنوان حیوان خانگی و با توجه به معدودبودن مطالعات در زمینه انگل‌های موجود در خزندگان در ایران و دنیا و با نظر به این‌که اطلاعات در این زمینه در کشور غالباً محدود به گزارشات موردی می‌باشند، در این طرح تلاش شد تا شیوع انگل‌های قابل ردیابی در مدفوع انواع خزندگان که به نوعی در تماس نزدیک با جوامع انسانی هستند، مانند انواع گونه‌های موجود در مجموعه‌های خصوصی، مجموعه‌های زیستی عمومی و خزندگان خانگی منفرد استان تهران مورد برررسی و شناسایی قرارگیرند. مواد و روش کار: تعداد 100 نمونه مدفوع از رده خزندگان، شامل مارها، مارمولک‌ها، تمساح‌ها و لاک‌پشت‌ها از نظر آلودگی به انواع انگل‌های گوارشی تک‌یاخته‌ای و پریاخته‌ای به روش گسترش مرطوب، شناورسازی، رنگ‌آمیزی زیل نیلسن و گسترش با لوگول مورد بررسی قرار گرفتند. یافته‌ها: در این مطالعه نمونه مدفوع 54 مارمولک، 34 مار، 11 لاک‌پشت و یک نمونه مدفوع از کروکودیل مشتمل بر 28 گونه خزنده، مورد بررسی انگل‌شناسی قرار گرفتند. 52% نمونه‌ها آلودگی انگلی داشتند. انواع تک‌یاخته‌های آپی‌کمپلکسا شامل کریپتوسپوریدیوم، ایزوسپورا و ایمریا، همچنین تک‌یاخته تاژک‌دار تریکومونادی، تک‌یاخته مژه‌دار بالانتیدیوم و نیز آمیب و انواع تخم‌های نماتود جنین‌دار، اُکسیورید و لارودار از انگل‌های شناسایی در نمونه‌های مورد بررسی بودند. بحث و نتیجه‌گیری: آلودگی انگلی در خزندگان در اسارت شیوع بالایی داشته و در صورت بروز علایم بالینی باید با مداخلات درمانی همراه گردند. به علاوه با توجه به غیربومی بودن برخی از گونه‌های بررسی شده در این مطالعه، یکی از نکاتی که در مورد خزندگان به عنوان حیوان خانگی باید مدنظر دامپزشکان باشد آگاه نمودن افراد در مورد خطرات احتمالی ناشی از رهاسازی عمدی یا فرار گونه‌های غیربومی در محیط زیست می‌باشد. در این راستا سازمان محیط زیست و سازمان دامپزشکی نیز دارای نقش غیرقابل انکاری بوده و نیاز است با سنجش مداوم بازار حیوانات خانگی و ارزیابی خطرات زیست محیطی آنها، نسبت به وضع قوانین مناسب و اطلاع‌رسانی‌های مناسب اقدام نمایند.

کلیدواژه‌ها


Introduction

 

Reptilia with more than 6000 species, which are increasingly being kept as pets in recent years, are host to a diverse range of parasites (Rataj et al. 2011).  Many wild-caught reptiles harbor some kind of parasites.  Although harboring parasites does not always result in clinical disease, in captivity with the negative effect of poor sanitary and husbandry management the concentration of parasites may increase.  Some of the parasites are harmless but others can be dangerous if left untreated (Pappini et al. 2011).  Depending on the parasite species and the degree of infestation endoparasites may cause different clinical symptoms (Pasmans et al. 2008).  Some of these parasites may not affect the animal but can cause health problems in people (Pasmans et al. 2008). 

Although there are many case reports, zoo reptile parasitic surveys or comprehensive parasitological description of a single parasite species recovered from reptiles (Fernando et al. 2009; Abdel-Baki et al. 2013; Díaz et al. 2013), there are very few surveys on the prevalence of fecal parasites in pet reptiles worldwide (Pasmans et al. 2008; Pappini et al. 2011; Rataj et al. 2011).  Considering the lack of knowledge about the normal microbiota of most reptilian taxa (Pasmans et al. 2008), as well as the increasing trend in keeping non-native reptile species in the last decade, there is evidently a need for the specification of parasites and their hosts.  These data will improve the understanding of the ecology of both the parasites and their hosts (Marschang 2015), besides helping veterinarians to perform routine screening and prescribe preventive/therapeutic measures (Pasmans et al. 2008).  The present study was thus undertaken to gain data on intestinal parasites of reptiles kept as pets or in small private collections in close contact with people. 

 

Materials and Methods

 

Between April 2013 and September 2014, fresh fecal samples from 100 captive reptiles not showing any clinical signs, representing 28 species were collected.  These included 11 Saurian species (n=54), 12 Ophidia (n=34), four Chelonian species (n=11) and a single sample from crocodilian suborder (Table 1).  The samples were investigated immediately after arriving in the laboratory or preserved in SAF and refrigerated for subsequent examination. A combination of native and iodine stained direct smears together with flotation saturated salt solution (CNF) was performed on each sample (Pasmans et al. 2008; Wolf et al. 2014).  Nematode infestations according to egg morphology were characterized as strongylid, strongyloides and oxyurid (Fig. 1). Besides all samples were investigated macroscopically and by modified Ziehl-Neelsen (MZN) staining for detection of gross parasites and Cryptosporidium, respectively. Detected oocysts were sporulated in 2.5% potassium dichromate for genus identification.

 

 

 

Table1.  Reptile species examined for fecal parasites.

 

Scientific   name

Common   name

Number examined

Number infested

Sauria

Iguana iguana

Iguana

33

25

Eublepharis macularius

Leopard gecko

8

4

Trapelus agilis

Steppe agama

1

1

Varanus griseus caspius

Trans Caspian desert monitor

2

0

Agamura persica

Blunt tailed spider gecko

1

0

Lacerta media

Three-lined Lizard

1

1

Pogona vitticeps

Bearded dragon

3

3

Tiliqua scincoides

Blue tongue skink

1

1

Sceloporus malachiticus

Green spiny lizard

1

0

Cryptopodion scabrum

Rough-tailed Gecko

1

0

Pseudopus apodus

European legless lizard

2

0

Ophidia

Python molurus

Indian Python

6

2

Macrovipera lebetina obtusa

Levantine viper

8

2

Eryx jaculus

Common sand boa

2

1

Echis carinatus sochureki

Eastern saw-scaled viper

2

1

Agkistrodon intermedius   caucasicus

Caucasian pit viper

1

0

Eryx johnii persicus

Persische sand boa

2

0

Spalerosophis diadema cliffordi

Clifford's snake/Diadem Snake

2

0

Rhynchocalamus melanocephalus

Black-headed Snake

2

0

Ophiophagus hannah

king cobra

4

3

Malpolon monspessulanus

Montpellier snake

1

0

 Coluber nummifer

Coin Snake

3

2

Micrurus fulvius 

Coral snake

1

0

Chelonian

Geochelone elegans

Indian star

1

0

Testudo graeca

Thigh tortoise

2

0

Trachemys scripta elegans

Red-eared slider

3

1

Testudo horsfieldii

Russian tortoise

5

4

 

Crocodylus niluticus

Nile crocodile

1

0

Total

 

 

100

52

               

 

 

 

Results

 

Overall, 52 fecal samples were infested with protozoas and nematodes. Single protozoan and helminthic infestations were detected in 10 and 23 of the samples, respectively. Dual/multiple protozoan infection and concurrent infection of protozoans and helminths were observed in six and 13 samples, respectively. Trichomonads, Balantidium, Cryptosporidium, Isospora, Eimeria and amoebae were the identified protozoas (Fig. 2) (Table 2). All three types of nematode eggs were identified in the infested samples. Fecal wet smear revealed 34 animals harboring parasites while floatation augmented it to 36. Amoeba and Cryptosporidium were detected by specific stains in seven and 14 samples, respectively. 

Sauria was the most infected suborder (64.8%) and oxyurid eggs were the most frequently identified parasites (37%) herein. Wet smear revealed 40.7% (22/54) parasitic infections while the use of floatation increased the infection frequency to 50% (27/54) (p=0.01, χ2= 11.0). Seven of the 11 inspected saurian species, were infested. Cryptosporidium and amoebae were identified in 16.7% and 11.1% of these samples.  In a blue tongue skink MZN staining revealed acid-fast organisms larger than Cryptosporidium oocysts (13-17×10-13 µm) resembling Cyclospora sp (Fig 3). 

32.4% of snakes were infested and use of floatation method did not significantly increase the detection rate (p=0.09, χ2= 2.8). Three of those samples were infected with Cryptosporidium sp. oocysts.  No amoeba was identified in Ophidia. King cobra was the most infested species.  In a sample from Coluber nummifer mite eggs originating from a prey were detected. 

45.5% of chelonians were infected, among which Testudo horsfieldii had the most diverse range of fecal parasites. Cryptosporidium sp. and amoeba were identified in Testudo horsfieldii (Table 2).  Blantidium, Strongylid and oxyurid eggs were the identified parasites in investigated chelonians.

 

Table2- Frequency of parasites detected in fecal samples.

Parasite genus

Host species (Number inspected)

Number of Positive samples

Balantidium

Iguana iguana (33)

1

Testudo horsfieldii (5)

1

Trichomonads

Iguana iguana (33)

2

Eryx jaculus (2)

1

Amoebae

Iguana iguana (33)

4

Eublepharis macularius (8)

2

Testudo horsfieldii (5)

1

Isospora

Pogona vitticeps (3)

1

Trachemys scripta elegans (3)

1

Cryptosporidium sp.

Iguana iguana (33)

7

Pogona vitticeps (3)

1

Tiliqua scincoides (1)

1

Macrovipera lebetina obtusa (8)

1

Echis carinatus sochureki (2)

1

Ophiophagus hannah (4)

1

Testudo horsfieldii (5)

2

Cyclospora sp.

Tiliqua scincoides (1)

1

Eimeria sp.

Pogona vitticeps (3)

1

Python molurus (6)

1

Strongylid egg

Iguana iguana (33)

11

Trapelus agilis (1)

1

Pogona vitticeps (3)

1

Coluber nummifer (3)

1

Testudo horsfieldii (5)

1

Oxyurid egg

Iguana iguana (33)

6

 

Eublepharis macularius (8)

4

 

Lacerta media (1)

1

 

Pogona vitticeps (3)

1

 

Macrovipera lebetina obtusa (8)

1

 

Testudo horsfieldii (5)

1

 

Strongyloides egg

Tiliqua scincoides (1)

1

Macrovipera lebetina obtusa (8)

1

 

Ophiophagus hannah (4)

1

 

 

 

Discussion

 

In the present study, 54 Saurians, 34 Ophidias, 11 Chelonians and a crocodile were investigated coprologically for fecal parasites.  The most frequent detected fecal  parasite was oxyurid egg (12%).  In lizards pinworm eggs were the most frequent parasite showing two morphologically distinct eggs as reported by Rataj et al (2011).  One morphotype with dark pitted egg wall identified as Pharyngodon sp. was detected in leopard gecko, Lacerta media and bearded dragon while the other unidentified species of pinworm egg was more elongate and translucent, mostly found in Iguanas (Fig. 4a, b). Oxyurid eggs are rarely detected in snakes (Okulewicz et al. 2014).  Rataj et al. (2011) reported oxurid eggs from a Platyceps karelini.  In this study pinworm eggs were detected in a Levantine viper (Fig. 4c). Although most pseudoparasitic pinworms from snakes are Syphacia (Souza et al. 2014), the eggs detected in the present study morphologically resembled lizard’s pinworms (Pharyngodonidae) (Wright 2009). The actual identification of these eggs requires isolation of the adult worm or further molecular investigations. Reptiles with oxyurid infections are generally asymptomatic. Pathologic changes are rare, but heavy infections might be one of the causes of anorexia in tortoises coming out of hibernation (Mitchell 2007) and a positive correlation has been reported between oxyurid and salmonella infection in Cheloniids (Dipineto et al., 2012). Strongylid eggs as the second most prevalent detected parasite were mostly seen in lizards while others reported it as the most prevalent parasite in Ophidia (Pasmans et al. 2008; Rataj et al. 2011).  

Trichomonads were identified in iguanas and a snake (3%) and Balantidium was recovered from a Russian tortoise and an iguana (2%). Our efforts in culturing the trichomonads in diamond’s medium at 37 ◦C and at room temperature were unsuccessful.  Ciliates and flagellates are commonly found in herbivorous lizards and also in turtles and snakes (Papini et al. 2011; Rataj et al. 2011). Endoparasites are an important cause of disease in captive reptiles.  Some of the intestinal parasites are considered normal residents of the gut flora but with predisposing factors they may lead to gastrointestinal diseases. The parasite species, the degree of infestation and conditions in captivity such as overcrowding or hygienic management will determine the ultimate clinical outcome of the existing parasite infections.  Consequently, examination for endoparasites has been recommended for checking the health status of all captive reptiles (Pasmans et al. 2008). Furthermore, precise morphologic and taxonomic description of reptile parasite species regarding reptile species, the lifecycle and their health impact are not widely identified or described.  Performing more detailed research on these aspects will certainly improve the understanding of the ecology of both the parasites and their hosts and may contribute to improving the safety and welfare of these animal species.

 

Acknowledgments

 

The authors would like to thank Dr. Naqa Tamimi and Mr.Mohammad Bagher Ahoo for their valuable help. This study was financially supported by University of Tehran under grant number 75080029/6/3.

Abdel-Baki, A.S., Al-Quraishy, S., Otaibi, M.A., Duszynski, D.W. (2013) A New Species of Isospora (Apicomplexa: Eimeriidae) infecting the Baiuch Rock Gecko, Bunopus tuberculatus, in Saudi Arabia. J Parasitol. 99: 1019-1023.##
Díaz, P., Rota, S., Marchesi, B., López, C., Panadero, R., Fernández, G., Díez-Baños, G.P., Morrondo, P., Poglayen, G. (2013) Cryptosporidium in pet snakes from Italy: molecular characterization and zoonotic implications. Vet Parasitol. 197: 68-73.##
Dipineto, L., Capasso, M., Maurelli, M.P., Russo, T.P., Pepe, P., Capone, G., Fioretti, A., Cringoli, G., Rinaldi, L. (2012) Survey of co-infection by Salmonella and oxyurids in tortoises. BMC Vet Res. 8: 69.##
Fernando, S.P., Udagama-Randeniya, P.V. (2009) Parasites of Selected Reptiles of the national zoological garden, Sri Lanka. J Zoo Wildl Med. 40: 272-275.##
Mitchell, M.A. (2007) Parasites of reptiles. In: Flynn’s Parasites of Laboratory Animals. Baker, D.G, (ed). Iowa, USA. p. 177–216.##
Marschang, R. (2015) What’s new in the scientific literature? Infectious diseases of reptiles: Peer-reviewed publications, January 2014–January 2015. J Herpetol Med Surg. 25: 6-15.##
Okulewicz, A., Kaźmierczak, M., Zdrzalik, K. (2014) Endoparasites of exotic snakes (Ophidia). Helminthologia. 51: 31-36.##
Papini, R., Manetti, C., Mancianti, F. (2011) Coprological survey in pet reptiles in Italy.  Vet Rec. 169: 207.##
Pasmans, F., Blahak, S., Martel, A., Pantchev, N. (2008) Introducing reptiles into a captive collection: the role of the veterinarian.  Vet J. 175: 53-68.##
Rataj, A.V., Lindtner-Knific, R., Vlahović, K., Mavri, U., Dovč, A. (2011) Parasites in pet reptiles. Acta Vet Scand. 53: 1-21. ##
Souza, J.L.D., Barbosa, A.D.S., Vazon, A.P., Uchôa, C.M.A., Nunes, B.C., Cortez, M.B.V., Bastos, O.M.P. (2014) Parasitological and immunological diagnoses from feces of captive-bred snakes at Vital Brazil Institute. Rev Bras Parasitol Vet. 23: 123-128.##
Wolf, D., Vrhovec, M.G., Failing, K., Rossier, C., Hermosilla, C., Pantchev, N. (2014) Diagnosis of gastrointestinal parasites in reptiles: comparison of two coprological methods. Acta Vet Scand. 56: 44.##